Antwoord:
Uitleg:
Uit de vraag, krijgen we de volgende informatie:
De punthellingsvergelijking.
Makkelijker maken.
Toevoegen
Makkelijker maken.
Bij het optellen van breuken moeten de noemers hetzelfde zijn. De kleinste gemene deler (LCD) kan worden gevonden door de noemers te factureren.
Prime factoriseer de noemers
Vermenigvuldig elke fractie met de equivalente fractie die resulteert in de LCD
Makkelijker maken.
Makkelijker maken.
Antwoord:
Uitleg:
Gebruik de helling - intercept-vergelijking:
Leg het punt
Vind een gemeenschappelijke deler:
Algemene noemer
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling van de lijn die twee punten met elkaar verbindt (x_1, y_1) en (x_2, y_2) wordt gegeven door (y_2-y_1) / (x_2-x_1) of (y_1-y_2) / (x_1-x_2 ) Aangezien de punten (8, -3) en (1, 0) zijn, wordt de helling van de lijn die hen verbindt gegeven door (0 - (- 3)) / (1-8) of (3) / (- 7) ie -3/7. Product van de helling van twee loodrechte lijnen is altijd -1. Dus de lijnlijn loodrecht daarop is 7/3 en daarom kan de vergelijking in hellingsvorm worden geschreven als y = 7 / 3x + c Als dit door het punt (0, -1) gaat, zetten we deze waarden in bovenstaande vergelijking, we krijgen -1 = 7/3 * 0 + c of c = 1 Daarom i
Noteer de punt-hellingsvorm van de vergelijking met de gegeven helling die het aangegeven punt passeert. A.) de lijn met helling -4 die doorloopt (5,4). en ook B.) de lijn met doorgang 2 (-1, -2). help alstublieft, dit verwarrend?
Y-4 = -4 (x-5) "en" y + 2 = 2 (x + 1)> "de vergelijking van een lijn in" kleur (blauw) "punthellingsvorm" is. • kleur (wit) (x) y-y_1 = m (x-x_1) "waarbij m de helling is en" (x_1, y_1) "een punt op de lijn" (A) "gegeven" m = -4 "en "(x_1, y_1) = (5,4)" vervanging van deze waarden in de vergelijking geeft "y-4 = -4 (x-5) larrcolor (blauw)" in punt-hellingsvorm "(B)" gegeven "m = 2 "en" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blauw) " in punthellingsvorm "