Antwoord:
Uitleg:
Laten we eerst eens kijken
Nu evalueren we
#=-8^(-1/3)#
#=-1/2#
De kosten voor het produceren van x T-shirts door een bedrijf worden gegeven door de vergelijking y = 15x + 1500 en de opbrengst y uit de verkoop van deze T-shirts is y = 30x. Zoek het break-even punt, het punt waar de lijn die de kosten vertegenwoordigt de inkomstenlijn kruist?
(100,3000) In wezen vraagt dit probleem je om het snijpunt van deze twee vergelijkingen te vinden. U kunt dit doen door ze gelijk te stellen, en aangezien beide vergelijkingen zijn geschreven in termen van y, hoeft u geen voorafgaande algebraïsche manipulatie uit te voeren: 15x + 1500 = 30x Laten we de x's aan de linkerkant behouden en de numerieke waarden aan de rechterkant. Om dit doel te bereiken, trekt u 1500 en 30x van beide kanten af: 15x-30x = -1500 Simplify: -15x = -1500 Deel beide kanten in met -15: x = 100 Pas op! Dit is niet het laatste antwoord. We moeten het PUNT vinden waar deze lijnen elkaar kruise
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =
Punten (-9, 2) en (-5, 6) zijn eindpunten van de diameter van een cirkel. Wat is de lengte van de diameter? Wat is het middelpunt C van de cirkel? Gegeven het punt C dat u in deel (b) hebt gevonden, vermeldt u het punt symmetrisch ten opzichte van C rond de x-as
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) symmetrisch punt over x-as: (-7, -4) Gegeven: eindpunten van de diameter van een cirkel: (- 9, 2), (-5, 6) Gebruik de afstandsformule om de lengte van de diameter te vinden: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Gebruik de middelpuntformule om zoek het midden: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Gebruik de coördinaatregel voor reflectie over de x-as (x, y) -> (x, -y): (-7, 4) symmetrisch p