Antwoord:
centrum,
symmetrisch punt over
Uitleg:
Gegeven: eindpunten van de diameter van een cirkel:
Gebruik de afstandsformule om de lengte van de diameter te vinden:
Gebruik de middelpuntformule om het midden te vinden:
Gebruik de coördinaatregel voor reflectie over de
Antwoord:
1)
2)
3)
Uitleg:
Laat het punt A zijn
Als de punten
Lengte van de diameter
Lengte van de diameter
Lengte van de diameter
Lengte van de diameter
Lengte van de diameter
Het middelpunt van de cirkel zijn de middelpunten van de eindpunten van de diameter.
Dus, door midpoints-formule,
Coördinaten van het centrum
Het punt dat symmetrisch is met C rond de x-as heeft coördinaten =
Een lijnsegment heeft eindpunten op (a, b) en (c, d). Het lijnsegment wordt verwijd door een factor van r rond (p, q). Wat zijn de nieuwe eindpunten en lengte van het lijnsegment?
(a, b) tot ((1-r) p + ra, (1-r) q + rb), (c, d) tot ((1-r) p + rc, (1-r) q + rd), nieuwe lengte l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Ik heb een theorie dat al deze vragen hier zijn, dus er is iets voor newbies om te doen. Ik doe de algemene zaak hier en kijk wat er gebeurt. We vertalen het vlak zodat het dilatatiepunt P op de oorsprong is gericht. Vervolgens schaalt de uitzetting de coördinaten met een factor r. Vervolgens vertalen we het vlak terug: A '= r (A - P) + P = (1-r) P + r A Dat is de parametrische vergelijking voor een lijn tussen P en A, waarbij r = 0 geeft P, r = 1 geven A, en r = r geven A ', het be
Je krijgt een cirkel B met een middelpunt (4, 3) en een punt op (10, 3) en een andere cirkel C waarvan het middelpunt (-3, -5) is en een punt op die cirkel is (1, -5) . Wat is de verhouding van cirkel B tot cirkel C?
3: 2 "of" 3/2 "we moeten de stralen van de cirkels berekenen en vergelijken" "de straal is de afstand van het centrum tot het punt" "op de cirkel" "centrum van B" = (4,3 ) "en punt is" = (10,3) "omdat de y-coördinaten beide 3 zijn, dan is de straal" "het verschil in de x-coördinaten" rArr "straal van B" = 10-4 = 6 "midden van C "= (- 3, -5)" en punt is "= (1, -5)" y-coördinaten zijn beide - 5 "rArr" radius van C "= 1 - (- 3) = 4" ratio " = (kleur (rood) "radius_B&qu
Cirkel A heeft een straal van 2 en een middelpunt van (6, 5). Cirkel B heeft een straal van 3 en een middelpunt van (2, 4). Als cirkel B wordt vertaald door <1, 1>, overlapt cirkel A dan? Zo nee, wat is de minimale afstand tussen punten op beide cirkels?
"cirkels overlappen"> "wat we hier moeten doen is de afstand (d)" "vergelijken tussen de middelpunten en de som van de radii" • "als de som van radii"> d "dan cirkels elkaar overlappen" • "als som van radii "<d" en dan geen overlapping "" voor het berekenen van d dat we nodig hebben om het nieuwe centrum "" van B te vinden na de gegeven vertaling "" onder de vertaling "<1,1> (2,4) tot (2 + 1, 4 + 1) tot (3,5) larrcolor (rood) "nieuw centrum van B" "om te berekenen d gebruik de" color (blue)