Antwoord:
Uitleg:
Zoek een paar factoren van
Het paar
Daarom vinden we:
# x ^ 2-5x-36 = (x-9) (x + 4) #
Alternatieve methode
Je kunt ook het vierkant vervolledigen en dan het verschil in vierkanten gebruiken:
# A ^ 2 B ^ 2 = (a-b) (a + b) #
met
# X ^ 2-5x-36 #
# = X ^ 2-5x + 25 / 4-25 / 4-36 #
# = (X-5/2) ^ 2-169 / 4 #
# = (X-5/2) ^ 2- (13/2) ^ 2 #
# = ((X-5/2) -13/2) ((x-5/2) +13/2) #
# = (X-9) (x + 4) #
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =
Wanneer een polynoom wordt gedeeld door (x + 2), is de rest -19. Wanneer hetzelfde polynoom wordt gedeeld door (x-1), is de rest 2, hoe bepaal je de rest wanneer het polynoom wordt gedeeld door (x + 2) (x-1)?
We weten dat f (1) = 2 en f (-2) = - 19 van de Restantstelling. Vind nu de rest van polynoom f (x) wanneer gedeeld door (x-1) (x + 2). De rest zal zijn van de vorm Ax + B, omdat het de rest is na deling door een kwadratische vorm. We kunnen nu de deler vermenigvuldigen maal het quotiënt Q ... f (x) = Q (x-1) (x + 2) + Ax + B Volgende, voeg 1 in en -2 voor x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Oplossen van deze twee vergelijkingen, we krijgen A = 7 en B = -5 Rest = Ax + B = 7x-5
Wanneer het polynoom vier termen heeft en u kunt niet iets weglaten van alle termen, herschikt u het polynoom zodanig dat u twee termen tegelijk kunt factoreren. Schrijf vervolgens de twee binomials waarmee u eindigt. (4AB + 8b) - (3a + 6)?
(a + 2) (4b-3) "de eerste stap is om de haakjes te verwijderen" rArr (4ab + 8b) kleur (rood) (- 1) (3a + 6) = 4ab + 8b-3a-6 "nu factoriseren de termen door ze te "groeperen" kleur (rood) (4b) (a + 2) kleur (rood) (- 3) (a + 2) "uitnemen" (a + 2) "als een gemeenschappelijke factor van elke groep "= (a + 2) (kleur (rood) (4b-3)) rArr (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) kleur (blauw)" Ter controle " (a + 2) (4b-3) larr "expand met behulp van FOIL" = 4ab-3a + 8b-6larr "vergelijken met uitbreiding hierboven"