Als de driehoek een rechthoekige driehoek is, is het kwadraat van de grootste zijde gelijk aan de som van de vierkanten van kleinere zijden. Maar de driehoek is een scherpe hoek. Dus vierkant van de grootste zijde is minder dan de som van de vierkanten van kleinere zijden. Vandaar
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 5 en 7. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 19. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Maximum oppervlakte = 187.947 "" vierkante eenheden Minimale oppervlakte = 88.4082 "" vierkante eenheden De driehoeken A en B zijn vergelijkbaar. Op verhouding en verhoudingsmethode van oplossing heeft driehoek B drie mogelijke driehoeken. Voor driehoek A: de zijkanten zijn x = 7, y = 5, z = 4.800941906394, hoek Z = 43.29180759327 ^ @ De hoek Z tussen zijden x en y is verkregen met behulp van de formule voor driehoeksgebied Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Drie mogelijke driehoeken voor driehoek B: de zijden zijn driehoek 1. x_1 = 19, y_1 = 95/7, z_1 = 13.0311280
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 6 en 9. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 15. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Delta's A en B zijn vergelijkbaar. Om het maximale oppervlak van Delta B te krijgen, moet kant 15 van Delta B overeenkomen met kant 6 van Delta A. Zijden hebben de verhouding 15: 6. Daarom zijn de gebieden in de verhouding 15 ^ 2: 6 ^ 2 = 225: 36 Maximumoppervlak van driehoek B = (12 * 225) / 36 = 75 Op dezelfde manier als om het minimale oppervlak te krijgen, komt zijde 9 van Delta A overeen met zijde 15 van Delta B. Zijkanten in verhouding 15: 9 en gebieden 225: 81 Minimaal gebied van Delta B = (12 * 225) / 81 = 33.3333