Antwoord:
Het antwoord is
Uitleg:
We doen een crossproduct om de vector loodrecht op het vlak te vinden
De vector wordt gegeven door de determinant
Verificatie door het puntproduct te doen
De vector is orthogonaal ten opzichte van de andere 2 vectoren
De eenheidsvector wordt verkregen door te delen door de modulus
De eenheidvector is
Wat is de eenheidsvector die orthogonaal is ten opzichte van het vlak dat (i + j - k) en (i - j + k) bevat?
We weten dat als vec C = vec A × vec B is, vec C dan loodrecht staat op zowel vec A als vec B. Dus, we moeten alleen het kruisproduct van de gegeven twee vectoren vinden. Dus (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Dus, de eenheidsvector is (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Wat is de eenheidsvector die orthogonaal is ten opzichte van het vlak dat <0, 4, 4> en <1, 1, 1> bevat?
Het antwoord is = <0,1 / sqrt2, -1 / sqrt2> De vector die loodrecht staat op 2 andere vectoren wordt gegeven door het crossproduct. <0,4,4> x <1,1,1> = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = <0,4, -4> Verificatie door het doen van de puntproducten <0,4,4>. <0,4, -4> = 0 + 16-16 = 0 <1,1,1>. <0,4, -4> = 0 + 4-4 = 0 De modulus van <0,4, -4> is = <0,4, - 4> = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 De eenheidsvector wordt verkregen door de vector te delen door de modulus = 1 / (4sqrt2) <0,4, -4> = <0,1 / sqrt2, -1 / sqrt2
Wat is de eenheidsvector die orthogonaal is ten opzichte van het vlak dat (20j + 31k) en (32i-38j-12k) bevat?
De eenheidsvector is == 1 / 1507.8 <938.992, -640> De vector loodrecht op 2 vectros in een vlak wordt berekend met de determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | waar <d, e, f> en <g, h, i> de 2 vectoren zijn Hier hebben we veca = <0,20,31> en vecb = <32, -38, -12> Daarom | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = <938.992, -640> = vecc Verificatie door 2 punt te doen producten <938.992, -640>. <