Antwoord:
Uitleg:
Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
Een object rust op (6, 7, 2) en versnelt constant met een snelheid van 4/3 m / s ^ 2 als het naar punt B gaat. Als punt B zich op (3, 1, 4) bevindt, hoe lang zal het duren voordat het object punt B bereikt? Stel dat alle coördinaten in meters zijn.
T = 3.24 Je kunt de formule gebruiken s = ut + 1/2 (op ^ 2) u is beginsnelheid s is afgelegde afstand t is tijd a is versnelling Nu begint het vanuit rust dus beginsnelheid is 0 s = 1/2 (op ^ 2) Om s te vinden tussen (6,7,2) en (3,1,4) gebruiken we afstandsformule s = sqrt ((6-3) ^ 2 + (7-1) ^ 2 + (2 -4) ^ 2) s = sqrt (9 + 36 + 4) s = 7 Versnelling is 4/3 meter per seconde per seconde 7 = 1/2 ((4/3) t ^ 2) 14 * (3/4 ) = t ^ 2 t = sqrt (10.5) = 3.24
Een object rust op (4, 5, 8) en versnelt constant met een snelheid van 4/3 m / s ^ 2 terwijl het naar punt B beweegt. Als punt B op (7, 9, 2) staat, hoe lang zal het duren voordat het object punt B bereikt? Stel dat alle coördinaten in meters zijn.
Zoek de afstand, definieer de beweging en uit de bewegingsvergelijking kun je de tijd vinden. Antwoord is: t = 3.423 s Allereerst moet je de afstand vinden. De cartesiaanse afstand in 3D-omgevingen is: Δs = sqrt (Δx ^ 2 + Δy ^ 2 + Δz ^ 2) Ervan uitgaande dat de coördinaten de vorm hebben van (x, y, z) Δs = sqrt ((4-7) ^ 2 + (5-9) ^ 2 + (8-2) ^ 2) Δs = 7,81 m De beweging is versnelling. Daarom: s = s_0 + u_0 * t + 1/2 * a * t ^ 2 Het object begint stil (u_0 = 0) en de afstand is Δs = s-s_0 s-s_0 = u_0 * t + 1/2 * a * t ^ 2 Δs = u_0 * t + 1/2 * a * t ^ 2 7.81 = 0 * t + 1/2 * 4/3 * t ^ 2 t = sqrt ((3 * 7.81) / 2) t = 3.4