Antwoord:
Uitleg:
Op basis van de afgeleide op inverse trigonometrische functies hebben we:
Dus laten we het vinden
Hier,
Laat
Wij hebben
De kettingregel zegt:
Laten we vinden
Laten we vinden
daarom
De grafiek van de functie f (x) = (x + 2) (x + 6) wordt hieronder getoond. Welke verklaring over de functie is waar? De functie is positief voor alle reële waarden van x waarbij x> -4. De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De nullen van een functie f (x) zijn 3 en 4, terwijl de nullen van een tweede functie g (x) 3 en 7 zijn. Wat zijn de nul (n) van de functie y = f (x) / g (x )?
Alleen nul van y = f (x) / g (x) is 4. Als nullen van een functie f (x) 3 en 4 zijn, betekent dit (x-3) en (x-4) factoren van f (x ). Verder zijn nullen van een tweede functie g (x) 3 en 7, wat betekent (x-3) en (x-7) zijn factoren van f (x). Dit betekent in de functie y = f (x) / g (x), hoewel (x-3) de noemer g moet annuleren (x) = 0 is niet gedefinieerd, wanneer x = 3. Het is ook niet gedefinieerd wanneer x = 7. Daarom hebben we een gat op x = 3. en alleen nul van y = f (x) / g (x) is 4.
De functie f (x) = sin (3x) + cos (3x) is het resultaat van een reeks transformaties waarbij de eerste een horizontale vertaling van de functie sin (x) is. Welke van deze beschrijft de eerste transformatie?
We kunnen de grafiek van y = f (x) van ysinx krijgen door de volgende transformaties toe te passen: een horizontale translatie van pi / 12 radialen naar links een stuk langs Ox met een schaalfactor van 1/3 eenheden een stuk langs Oy met een schaalfactor van sqrt (2) eenheden Beschouw de functie: f (x) = sin (3x) + cos (3x) Laten we veronderstellen dat we deze lineaire combinatie van sinus en cosinus als één faseverschoven sinusfunctie kunnen schrijven, dat is veronderstel we hebben: f (x) - = Asin (3x + alpha) = A {sin3xcosalpha + cos3xsinalpha} = Acosalpha sin3x + Asinalphacos3x In welk geval door coë