Antwoord:
Zie dit. Met dank aan Gaurav Bansal.
Uitleg:
Ik probeerde na te denken over de beste manier om dit uit te leggen en ik stuitte op een pagina die het heel goed doet. Ik geef deze kerel liever de eer voor de uitleg. In het geval dat de link voor sommigen niet werkt, heb ik hieronder wat informatie opgenomen.
Eenvoudig gezegd: de
De correlatiecoëfficiënt (
- Als
#X# en# Y # in perfecte harmonie zijn, dan zal deze waarde positief zijn#1# - Als
#X# verhoogt terwijl# Y # afneemt op precies de tegenovergestelde manier, dan zal deze waarde zijn#-1# #0# zou een situatie zijn waarin er geen correlatie is tussen#X# en# Y #
Dit echter
Dit is waar de
Als je een discussie wilt over een aantal van de wiskundige noties die te maken hebben met het relateren van de twee waarden, kijk dan hier.
Als de som van de coëfficiënt van de 1e, 2e, 3e termijn van de uitbreiding van (x2 + 1 / x) verhoogd tot de macht m is 46, zoek dan de coëfficiënt van de termen die geen x bevat?
Eerste vind m. De eerste drie coëfficiënten zijn altijd ("_0 ^ m) = 1, (" _1 ^ m) = m, en ("_2 ^ m) = (m (m-1)) / 2. De som van deze vereenvoudigt naar m ^ 2/2 + m / 2 + 1. Stel dit gelijk aan 46, en los op m. m ^ 2/2 + m / 2 + 1 = 46 m ^ 2 + m + 2 = 92 m ^ 2 + m - 90 = 0 (m + 10) (m - 9) = 0 De enige positieve oplossing is m = 9. Nu, in de uitbreiding met m = 9, moet de term die x mist de term bevatten (x ^ 2) ^ 3 (1 / x) ^ 6 = x ^ 6 / x ^ 6 = 1 Deze term heeft een coëfficiënt van ("_6 ^ 9) = 84. De oplossing is 84.
Een solide bol rolt puur op een ruw horizontaal oppervlak (kinetische wrijvingscoëfficiënt = mu) met snelheid van middelpunt = u. Het botst inelastisch met een gladde verticale muur op een bepaald moment. De restitutiecoëfficiënt is 1/2?
(3u) / (7mug) Nou, terwijl we een poging doen om dit op te lossen, kunnen we zeggen dat in eerste instantie puur rollen plaatsvond juist vanwege u = omegar (waar, omega is de hoeksnelheid) Maar toen de botsing plaatsvond, was het lineair de snelheid daalt, maar tijdens de botsing was er geen verandering in de omega-omega, dus als de nieuwe snelheid v is en de hoeksnelheid omega is, dan moeten we na hoeveel keren als gevolg van het toegepaste externe koppel door wrijvingskracht, het in puur rollen zijn , ie v = omega'r Nu, gegeven, de restitutiecoëfficiënt is 1/2 dus na de botsing zal de bol een snelheid van u
Hoe schrijf je een polynomiale functie van de laagste graad die reële coëfficiënten heeft, de volgende gegeven nulpunten -5,2, -2 en een leidende coëfficiënt van 1?
Het vereiste polynoom is P (x) = x ^ 3 + 5x ^ 2-4x-20. We weten dat: als a een nul is van een echte polynoom in x (zeg), dan is x-a de factor van de polynoom. Laat P (x) de vereiste polynoom zijn. Hier -5,2, -2 zijn de nullen van het vereiste polynoom. impliceert {x - (- 5)}, (x-2) en {x - (- 2)} zijn de factoren van de vereiste polynoom. impliceert P (x) = (x + 5) (x-2) (x + 2) = (x + 5) (x ^ 2-4) betekent P (x) = x ^ 3 + 5x ^ 2-4x- 20 Het vereiste polynoom is dus P (x) = x ^ 3 + 5x ^ 2-4x-20