Antwoord:
Uitleg:
# "de vergelijking van een lijn evenwijdig aan de x-as, dat is een" #
# "horizontale lijn is" #
#color (rood) (bar (ul (| kleur (wit) (2/2) kleur (zwart) (y = c) kleur (wit) (2/2) |))) #
# "waarbij c de waarde van de y-coördinaat is die de regel" #
# "doorloopt" #
# "voor punt" (1,2) rArrc = 2 #
# "vergelijking van horizontale lijn is" y = 2 # grafiek {(y-0.001x-2) = 0 -10, 10, -5, 5}
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.
Een superheld lanceert zichzelf vanaf de bovenkant van een gebouw met een snelheid van 7,3 m / s in een hoek van 25 boven de horizontaal. Als het gebouw 17 m hoog is, hoe ver reikt hij dan horizontaal voordat hij de grond bereikt? Wat is zijn eindsnelheid?
Een diagram hiervan zou er als volgt uitzien: Wat ik zou doen is een lijst maken van wat ik weet. We nemen negatief als omlaag en verlaten als positief. h = "17 m" vecv_i = "7.3 m / s" veca_x = 0 vecg = - "9.8 m / s" ^ 2 Deltavecy =? Deltavecx =? vecv_f =? DEEL EEN: DE ASCENSIE Wat ik zou doen is ontdekken waar de top ligt om Deltavecy te bepalen, en dan werken in een vrijevalscenario. Merk op dat aan de top, vecv_f = 0 omdat de persoon van richting verandert door de overheersing van de zwaartekracht in het verminderen van de verticale component van de snelheid door nul en in de negatieven. Ee