De wortels van de kwadratische vergelijking 2x ^ 2-4x + 5 = 0 zijn alfa (a) en bèta (b). (a) Laat zien dat 2a ^ 3 = 3a-10 (b) Vind de kwadratische vergelijking met wortels 2a / b en 2b / a?
Zie hieronder. Zoek eerst de wortels van: 2x ^ 2-4x + 5 = 0 Gebruik de kwadratische formule: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alpha = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 kleur (blauw) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (blauw) (= (- 14 + 3isqrt (6)) / 2) b)
Tomas schreef de vergelijking y = 3x + 3/4. Toen Sandra haar vergelijking schreef, ontdekten ze dat haar vergelijking dezelfde oplossingen had als de vergelijking van Tomas. Welke vergelijking kan van Sandra zijn?
4y = 12x +3 12x-4y +3 = 0 Een vergelijking kan in vele vormen worden gegeven en toch hetzelfde betekenen. y = 3x + 3/4 "" (bekend als de helling / intercept-vorm.) Vermenigvuldigd met 4 om de breuk te verwijderen geeft: 4y = 12x +3 "" rarr 12x-4y = -3 "" (standaardformulier) 12x- 4y +3 = 0 "" (algemene vorm) Dit zijn allemaal in de eenvoudigste vorm, maar we zouden er ook oneindig veel variaties van kunnen hebben. 4y = 12x + 3 kan worden geschreven als: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 enz
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.