Antwoord:
Uitleg:
N.B. Dit kan worden geschreven als:
Laten we eens kijken wat er gebeurt
en
Vandaar,
Laten we nu kijken wat er gebeurt als
en
Vandaar,
Om de onderscheppingen te vinden:
De grafiek van
grafiek {2 / (x + 1) -5 -20.27, 20.29, -10.13, 10.14}
Wat zijn de asymptoten voor y = 3 / (x-1) +2 en hoe teken je de functie uit?
Verticale asymptoot is in kleur (blauw) (x = 1 horizontale asymptoot in kleur (blauw) (y = 2 grafiek van de rationale functie is beschikbaar met deze oplossing. We krijgen de rationele functiekleur (groen) (f (x) = [3 / (x-1)] + 2 We zullen f (x) vereenvoudigen en herschrijven als rArr [3 + 2 (x-1)] / (x-1) rArr [3 + 2x-2] / (x -1) rArr [2x + 1] / (x-1) Vandaar, kleur (rood) (f (x) = [2x + 1] / (x-1)) Verticale asymptoot Zet de noemer op nul. get (x-1) = 0 rArr x = 1 Daarom heeft Vertical Asymptote de kleur (blauw) (x = 1 horizontale asymptoot) We moeten de graden van de teller en de noemer vergelijken en controleren of ze
Wat zijn de asymptoten voor y = 2 / x en hoe teken je de functie uit?
Asymptoten x = 0 en y = 0 grafiek {xy = 2 [-10, 10, -5, 5]} y = 2 / x xy-2 = 0 Vergelijking heeft het type F_2 + F_0 = 0 Waarbij F_2 = voorwaarden van vermogen 2 F_0 = termen van Power 0 Vandaar door inspectiemethode Asymptoten zijn F_2 = 0 xy = 0 x = 0 en y = 0 grafiek {xy = 2 [-10, 10, -5, 5]} Een grafiek vinden Punten zodanig dat op x = 1, y = 2 op x = 2, y = 1 op x = 4, y = 1/2 op x = 8, y = 1/4 .... op x = -1, y = -2 bij x = -2, y = -1 bij x = -4, y = -1 / 2 bij x = -8, y = -1 / 4 enzovoort en verbindt gewoon de punten en je krijgt de grafiek van functie.
Wat zijn de asymptoten voor y = -4 / (x + 2) en hoe teken je de functie uit?
Asymptoten: y = o x = -2 De asymptoten zijn op x = -2 en y0, dit komt omdat wanneer x = -2 de noemer gelijk zou zijn aan 0, wat niet kan worden opgelost. De y = 0 asymptoot wordt veroorzaakt omdat als x-> oo het getal zo klein wordt en dicht bij 0 komt, maar nooit bij 0 komt. De grafiek is die van y = 1 / x maar verschoven naar links met 2 en omgedraaid in de x-as. De curven worden meer afgerond als de teller een groter getal is. Grafiek van y = 1 / x grafiek {1 / x [-10, 10, -5, 5]} Grafiek van y = 4 / x grafiek {4 / x [-10, 10, -5, 5]} Grafiek van y = -4 / x grafiek {-4 / x [-10, 10, -5, 5]} Grafiek van y = -4 / (x +