
Een deeltje wordt geprojecteerd vanaf de grond met een snelheid van 80 m / s onder een hoek van 30 ° met horizontaal vanaf de grond. Wat is de grootte van de gemiddelde snelheid van het deeltje in het tijdsinterval t = 2s tot t = 6s?

Laten we de tijd bekijken die het deeltje nodig heeft om de maximale hoogte te bereiken, het is, t = (u sin theta) / g Gegeven, u = 80ms ^ -1, theta = 30 dus, t = 4.07 s Dat betekent dat het bij 6s al begonnen is naar beneden gaan. Dus, opwaartse verplaatsing in 2s is, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m en verplaatsing in 6s is s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Dus verticale verschuiving in (6-2) = 4s is (63.6-60.4) = 3.2m en horizontale verplaatsing in (6-2) = 4s is (u cos theta * 4) = 277.13m Dus de netto verplaatsing is 4s is sqrt (3.2 ^ 2 + 277.13 ^ 2) = 277.15m Dus, gemiddelde velcoïteit =
Wat is de hoek tussen twee krachten van gelijke grootte, F_a en F_b, wanneer de grootte van hun resultante ook gelijk is aan de grootte van een van deze krachten?

Theta = (2pi) / 3 Laat de hoek tussen F_a en F_b theta zijn en hun resultaat is F_r Dus F_r ^ 2 = F_a ^ 2 + F_b ^ 2 + 2F_aF_bcostheta Nu met de gegeven voorwaarde laat F_a = F_b = F_r = F So F ^ 2 = F ^ 2 + F ^ 2 + 2F ^ 2costheta => costheta = -1 / 2 = cos (2pi / 3): .theta = (2pi) / 3
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).

Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =