Antwoord:
Uitleg:
De hellingpuntvorm voor een lijn met helling
Gegeven
De hellingspuntvorm is
je zou dit kunnen vereenvoudigen als
of zet het om in standaardvorm (
of
Lijn n loopt door punten (6,5) en (0, 1). Wat is het y-snijpunt van lijn k, als lijn k loodrecht staat op lijn n en door het punt (2,4) gaat?
7 is het y-snijpunt van lijn k Eerste, laten we de helling zoeken voor lijn n. (1-5) / (0-6) (-4) / - 6 2/3 = m De helling van lijn n is 2/3. Dat betekent dat de helling van lijn k, die loodrecht staat op lijn n, de negatieve reciprook is van 2/3, of -3/2. Dus de vergelijking die we tot nu toe hebben is: y = (- 3/2) x + b Om b of het y-snijpunt te berekenen, plug je gewoon (2,4) in de vergelijking. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Het y-snijpunt is dus 7
Wat is de vergelijking van een lijn die door het punt gaat (2, 5) en staat loodrecht op een lijn met een helling van -2?
Y = 1 / 2x + 4 Beschouw de standaardvorm y = mx + c als de vergelijking van een ul ("rechte lijn") De gradiënt van deze lijn is m We krijgen te horen dat m = -2 De helling van een rechte lijn loodlijn hierom is -1 / m. Dus de nieuwe lijn heeft de gradiënt -1 / m = (-1) xx1 / (- 2) = 1/2 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ Dus de vergelijking van de lijn is: y = 1 / 2x + c .................. .......... Vergelijking (1) Er wordt ons verteld dat deze lijn door het punt loopt (x, y) = (2,5) Dit vervangen door vergelijking (1) geeft 5 = 1/2 (2 ) + c "&quo
Wat is de vergelijking van een lijn die door het punt gaat (6, 3) en staat loodrecht op een lijn met een helling van -3/2?
(y-3) = (2/3) (x-6) of y = (2/3) x-1 Als een lijn loodrecht staat op een andere lijn, is de helling de negatieve reciprook van die lijn, wat betekent dat je een negatief en draai dan de teller met de noemer. Dus de helling van de loodrechte lijn is 2/3 We hebben het punt (6,3) dus de punt-hellingsvorm is de gemakkelijkste manier om een vergelijking te vinden: (y-3) = (2/3) ( x-6) Dit moet voldoende zijn, maar als je het nodig hebt in de vorm van een hellingsonderbreking, los dan op voor y: y-3 = (2/3) x-4 y = (2/3) x-1