Antwoord:
Uitleg:
Laten we twee gegeven punten op een verticale lijn beschouwen
Laat
Het tweepuntsformulier gebruiken
God zegene … Ik hoop dat de uitleg nuttig is.
Antwoord:
verticaal is x = - 4
horizontaal is y = -3
Uitleg:
Verticale lijnen zijn evenwijdig aan de Y-as en lopen door alle punten in het vlak met dezelfde x-coördinaat. Aangezien het door het punt gaat (-4, -3), zal het door x = -4 gaan, vandaar de vergelijking van deze regel x = -4
Horizontale lijnen lopen evenwijdig aan de x-as en lopen door alle punten in het vlak met dezelfde y-coördinaat. Omdat het doorgaat
(-4, -3) dan gaat het door y = -3. vandaar de vergelijking van deze lijn is y = -3
grafiek {(y-0.001x + 3) (y-1000x-4000) = 0 -10, 10, -5, 5}
De lijngrafiek in het xy-vlak loopt door de punten (2,5) en (4,11). De grafiek van lijn m heeft een helling van -2 en een x-snijpunt van 2. Als punt (x, y) het snijpunt van lijnen l en m is, wat is dan de waarde van y?
Y = 2 Stap 1: Bepaal de vergelijking van lijn l We hebben de hellingformule m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Nu op punt hellingsvorm de vergelijking is y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Stap 2: Bepaal de vergelijking van lijn m Het x-snijpunt zal altijd heb y = 0. Daarom is het gegeven punt (2, 0). Met de helling hebben we de volgende vergelijking. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Stap 3: schrijf en los een stelsel van vergelijkingen op We willen de oplossing van het systeem vinden {(y = 3x - 1), (y = -2x + 4):} Door substitutie: 3x - 1 = -2x + 4 5x = 5
Er zijn 120 studenten die wachten op een excursie. De studenten zijn genummerd van 1 tot 120, alle even genummerde studenten gaan op bus1, die deelbaar zijn door 5 gaan op bus2 en degenen waarvan het aantal deelbaar is door 7 gaan op bus3. Hoeveel studenten zijn er niet in de bus geweest?
41 studenten stapten niet in een bus. Er zijn 120 studenten. Op bus 1 wordt zelfs genummerd, d.w.z. elke tweede student gaat, dus 120/2 = 60 studenten gaan. Merk op dat elke tiende student, d.w.z. in alle 12 studenten, die op Bus2 hadden kunnen gaan, vertrokken zijn op Bus1. Aangezien elke vijfde student in Bus2 gaat, is het aantal studenten dat in de bus gaat (minder dan 12 die in Bus1 zijn gegaan) 120 / 5-12 = 24-12 = 12 Nu zijn die deelbaar door 7 in Bus3, dat is 17 (zoals 120/7 = 17 1/7), maar die met nummers {14,28,35,42,56,70,84,98,105,112} - bij alle 10 zijn ze al verdwenen in Bus1 of Bus2. Dus in Bus3 ga 17-10 = 7
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =