Antwoord:
Uitleg:
Stel dat z varieert direct met x en omgekeerd met het kwadraat van y. Als z = 18 wanneer x = 6 en y = 2, wat is z wanneer x = 8 en y = 9?
Z = 32/27 "de begininstructie hier is" zpropx / (y ^ 2) "om een constante te converteren naar een vergelijking door de constante" "van variatie" rArrz = (kx) / (y ^ 2) "om k te vinden gebruik de gegeven voorwaarde "z = 18" wanneer "x = 6" en "y = 2 z = (kx) / (y ^ 2) rArrk = (y ^ 2z) / x = (4xx18) / 6 = 12" vergelijking is "kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (z = (12x) / (y ^ 2)) kleur (wit) (2/2) |)) ) "wanneer" x = 8 "en" y = 9 z = (12xx8) / 81 = 32/27
'L varieert gezamenlijk als een en vierkantswortel van b, en L = 72 als a = 8 en b = 9. Zoek L als a = 1/2 en b = 36? Y varieert gezamenlijk als de kubus van x en de vierkantswortel van w, en Y = 128 als x = 2 en w = 16. Zoek Y als x = 1/2 en w = 64?
L = 9 "en" y = 4> "de begininstructie is" Lpropasqrtb "om een constante te converteren naar een vergelijking door k de constante" "van variatie" rArrL = kasqrtb "om te zoeken naar k gebruik de gegeven voorwaarden" L = 72 "wanneer "a = 8" en "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" vergelijking is "kleur (rood) (balk (ul (| kleur (wit) ( 2/2) kleur (zwart) (L = 3asqrtb) kleur (wit) (2/2) |))) "wanneer" a = 1/2 "en" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 kleur (blauw) "-------
Wat is de vierkantswortel van 7 + vierkantswortel van 7 ^ 2 + vierkantswortel van 7 ^ 3 + vierkantswortel van 7 ^ 4 + vierkantswortel van 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Het eerste wat we kunnen doen is de wortels annuleren met de wortels met de even krachten. Omdat: sqrt (x ^ 2) = x en sqrt (x ^ 4) = x ^ 2 voor elk getal, kunnen we alleen maar zeggen dat sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 herschreven worden als 7 ^ 2 * 7, en die 7 ^ 2 kan uit de wortel komen! Hetzelfde is van toepassing op 7 ^ 5 maar het is herschreven als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7