Antwoord:
Polair
Uitleg:
Polaire moleculen hebben licht positief en licht negatief loopt af. Dit komt voort uit polaire bindingen, die afkomstig zijn van een ongelijke verdeling van elektronen binnen een covalente binding.
Elektronen kunnen ongelijk verdeeld zijn in de obligatie vanwege een verschil in electronegativity. Bijvoorbeeld fluor
Nu in een molecuul met meerdere covalente bindingen, b.v. water, we moeten de richting van de dipolen om te zien of er een algehele polariteit is. Als de dipolen naar elkaar toe wijzen en weglaten, of tegenovergestelde richtingen hebben en annuleren, is er geen totale net-dipool en dus is het molecuul niet-polair. Als de dipolen niet worden geannuleerd, bestaat er een algemene netto dipool en is het molecuul polair.
We zien hier dat water er 2 heeft polaire bindingen, twee O-H covalente bindingen waarin de zuurstof veel elektronegatiefer is dan de waterstof, resulterend in de waterstof is licht positief en de zuurstof is licht negatief. Nu zien we vanuit dit diagram ook dat de obligaties zodanig zijn gepositioneerd dat de dipolen niet worden geannuleerd (asymmetrisch). Dit resulteert in een totale netto dipool, wat betekent dat water een polair molecuul is.
Wat is de golflengte voor een derde harmonische staande golf op een snaar met vaste uiteinden als de twee uiteinden 2,4 m van elkaar verwijderd zijn?
"1,6 m" Hogere harmonischen worden gevormd door achtereenvolgens meerdere knooppunten toe te voegen. De derde harmonische heeft nog twee knooppunten dan de grondtoon, de knopen zijn symmetrisch langs de lengte van de snaar gerangschikt. Een derde van de lengte van de string bevindt zich tussen elk knooppunt. Het staande golfpatroon wordt hierboven in de afbeelding getoond. Als u naar de afbeelding kijkt, moet u kunnen zien dat de golflengte van de derde harmonische tweederde van de lengte van de snaar is. lambda_3 = (2/3) L = (2/3) × "2.4 m" = kleur (blauw) "1.6 m" De frequentie van de de
Een veer met een constante van 9 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een voorwerp met een massa van 2 kg en een snelheid van 7 m / s botst met en drukt de veer samen tot deze niet meer beweegt. Hoeveel zal de lente comprimeren?
Delta x = 7 / 3sqrt2 "" m E_k = 1/2 * m * v ^ 2 "De kinetische energie van het object" E_p = 1/2 * k * Delta x ^ 2 "De potentiële energie van samengedrukte lente" E_k = E_p "Instandhouding van energie" annuleren (1/2) * m * v ^ 2 = annuleren (1/2) * k * Delta x ^ 2 m * v ^ 2 = k * Delta x ^ 2 2 * 7 ^ 2 = 9 * Delta x ^ 2 Delta x = sqrt (2 * 7 ^ 2/9) Delta x = 7 / 3sqrt2 "" m
Een veer met een constante van 4 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een object met een massa van 2 kg en een snelheid van 3 m / s botst met en comprimeert de veer totdat deze niet meer beweegt. Hoeveel zal de lente comprimeren?
De veer zal 1,5 m comprimeren. Je kunt dit berekenen aan de hand van Hooke's wet: F = -kx F is de kracht uitgeoefend op de veer, k is de veerconstante en x is de afstand die de veer comprimeert. Je probeert x te vinden. Je moet k weten (je hebt dit al) en F. Je kunt F berekenen met behulp van F = ma, waarbij m de massa is en a de versnelling is. Je krijgt de massa, maar je moet de versnelling kennen. Om de versnelling (of vertraging, in dit geval) te vinden met de informatie die u hebt, gebruikt u deze handige herschikking van de bewegingswetten: v ^ 2 = u ^ 2 + 2as waar v de eindsnelheid is, u de beginsnelheid, a is d