Antwoord:
Uitleg:
Differentiëren,
Onderscheid tweede termijn,
Vermenigvuldigen,
Makkelijker maken,
Verfijnen,
Antwoord:
Zoals hierboven
Uitleg:
Als alternatief zou je kunnen zeggen:
Dan:
Laat zien dat cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ik ben een beetje in de war als ik Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) maak, zal het negatief worden als cos (180 ° -theta) = - costheta in het tweede kwadrant. Hoe kan ik de vraag bewijzen?
Zie onder. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hoe onderscheid je sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?
(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy ) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) * sen (x ^ 2 + 2) * 2x + 2sen (x + 2) (dy ) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) / (dx) = (cancel2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (cancel2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))
Hoe onderscheid je y = cos (cos (cos (x)))?
Dy / dx = -sin (cos (cos (x))) sin (cos (x)) sin (x) Dit is een aanvankelijk ontmoedigend ogend probleem, maar in werkelijkheid is het, met begrip van de kettingregel, vrij eenvoudig. We weten dat voor een functie van een functie als f (g (x)) de kettingregel ons vertelt dat: d / dy f (g (x)) = f '(g (x) g' (x) Door toe te passen deze regel drie keer, kunnen we eigenlijk een algemene regel bepalen voor elke functie zoals deze waarin f (g (h (x))): d / dy f (g (h (x))) = f '(g (h (x))) g '(h (x)) h' (x) Dus toepassing van deze regel, gezien het feit dat: f (x) = g (x) = h (x) = cos (x) dus f '(x ) =