Antwoord:
Zoals hieronder.
Uitleg:
De transponering van een matrix is een nieuwe matrix waarvan de rijen de kolommen van het origineel zijn.
(Dit maakt de kolommen van de nieuwe matrix de rijen van het origineel). Hier is een matrix en de transponering ervan:
Het superscript "T" betekent "transponeren".
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Het gewicht van een nikkel is 80% van het gewicht van een kwart. Als een nikkel 5 gram weegt, hoeveel weegt een kwart dan? Een dubbeltje weegt 50% zoveel als een nikkel. Wat is het gewicht van een dubbeltje?
Gewicht van een kwart = 6,25 gram Gewicht van een dubbeltje = 2,5 gram Het gewicht van een nikkel is 80% gewicht van een kwart of Het gewicht van een nikkel is 5 gram of een gewicht van een kwart = 5 / 0,8 = 6,25 gram --- ---------- Ans1 Gewicht van een dubbeltje = 50% = 1/2 (gewicht van het nikkel) = 5/2 = 2,5 gram ------------- Ans2
Laat [(x_ (11), x_ (12)), (x_21, x_22)] worden gedefinieerd als een object dat matrix wordt genoemd. De determinant van een matrix wordt gedefinieerd als [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Als M [(- 1,2), (-3, -5)] en N = [(- 6,4), (2, -4)] wat is dan de determinant van M + N & MxxN?
De determinant van is M + N = 69 en die van MXN = 200ko. Men moet ook de som en het product van de matrices definiëren. Maar hier wordt verondersteld dat ze net zo zijn gedefinieerd in handboeken voor 2xx2 matrix. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, - 9)] Vandaar dat de bepalende factor (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Vandaar deeminatie van MXN = (10xx8 - (- 12) xx10) = 200