De eindpunten van een lijnsegment zijn op de coördinaten (3, 4, 6) en (5, 7, -2). Wat is het middelpunt van het segment?
De reqd. mid-pt. "M is M (4,11 / 2,2)". Voor de gegeven punten. A (x_1, y_1, z_1) en B (x_2, y_2, z_2), de midpt. M van het segment AB wordt gegeven door, M ((x_1 + x_2) / 2, (y_1 + y_2) / 2, (z_1 + z_2) / 2) Vandaar dat het vereiste. mid-pt. "M is M (4,11 / 2,2)".
Een lijnsegment heeft eindpunten op (a, b) en (c, d). Het lijnsegment wordt verwijd door een factor van r rond (p, q). Wat zijn de nieuwe eindpunten en lengte van het lijnsegment?
(a, b) tot ((1-r) p + ra, (1-r) q + rb), (c, d) tot ((1-r) p + rc, (1-r) q + rd), nieuwe lengte l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Ik heb een theorie dat al deze vragen hier zijn, dus er is iets voor newbies om te doen. Ik doe de algemene zaak hier en kijk wat er gebeurt. We vertalen het vlak zodat het dilatatiepunt P op de oorsprong is gericht. Vervolgens schaalt de uitzetting de coördinaten met een factor r. Vervolgens vertalen we het vlak terug: A '= r (A - P) + P = (1-r) P + r A Dat is de parametrische vergelijking voor een lijn tussen P en A, waarbij r = 0 geeft P, r = 1 geven A, en r = r geven A ', het be
Punten (-9, 2) en (-5, 6) zijn eindpunten van de diameter van een cirkel. Wat is de lengte van de diameter? Wat is het middelpunt C van de cirkel? Gegeven het punt C dat u in deel (b) hebt gevonden, vermeldt u het punt symmetrisch ten opzichte van C rond de x-as
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) symmetrisch punt over x-as: (-7, -4) Gegeven: eindpunten van de diameter van een cirkel: (- 9, 2), (-5, 6) Gebruik de afstandsformule om de lengte van de diameter te vinden: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Gebruik de middelpuntformule om zoek het midden: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Gebruik de coördinaatregel voor reflectie over de x-as (x, y) -> (x, -y): (-7, 4) symmetrisch p