Antwoord:
Alle echte cijfers behalve
Uitleg:
Het domein van een functie is eenvoudig de set van alles
Met behulp van de nul eigenschap van vermenigvuldiging, als
Dus,
Dit betekent dat het domein alle echte nummers behalve is
In de vaste notatie kan dit worden geschreven als
Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
Wat is het domein van de gecombineerde functie h (x) = f (x) - g (x), als het domein van f (x) = (4,4.5] en het domein van g (x) is [4, 4.5 )?
Het domein is D_ {f-g} = (4,4.5). Zie uitleg. (f-g) (x) kan alleen worden berekend voor die x, waarvoor zowel f als g zijn gedefinieerd. Dus we kunnen dat schrijven: D_ {f-g} = D_fnnD_g Hier hebben we D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}