Antwoord:
Uitleg:
Veronderstelling: Straatlijn loopt door bepaalde punten!
Het meest linkse punt
Standaardformulier vergelijking:
Waar m het verloop is.
Laat
Dan
Omdat de gradiënt (m) negatief is, 'helt' de lijn van links naar rechts naar beneden.
Vervangingswaarde van
Zo
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die doorloopt (9, -6) en loodrecht op de lijn waarvan de vergelijking y = 1 / 2x + 2 is?
Y = -2x + 12 De vergelijking van een lijn met bekende gradiënt "" m "" en een bekende reeks coördinaten "" (x_1, y_1) "" wordt gegeven door y-y_1 = m (x-x_1) de vereiste regel staat loodrecht op "" y = 1 / 2x + 2 voor loodrechte verlopen m_1m_2 = -1 de gradiënt van de gegeven lijn is 1/2 thre vereiste helling 1 / 2xxm_2 = -1 => m_2 = -2 dus we hebben coördinaten gegeven " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12
Wat is de vergelijking van de lijn die doorloopt (1,2) en is parallel aan de lijn waarvan de vergelijking 4x + y-1 = 0 is?
Y = -4x + 6 Kijk naar het diagram De gegeven lijn (rode kleurlijn) is - 4x + y-1 = 0 De vereiste lijn (groene kleurlijn) loopt door het punt (1,2) Stap - 1 Zoek de helling van de gegeven lijn. Het is in de vorm ax + by + c = 0 De helling is gedefinieerd als m_1 = (- a) / b = (- 4) / 1 = -4 Stap -2 De twee lijnen lopen parallel. Vandaar dat hun hellingen gelijk zijn. De helling van de vereiste lijn is m_2 = m_1 = -4 Stap - 3 De vergelijking van de vereiste lijn y = mx + c Waarm = -4 x = 1 y = 2 Vind c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Gebruik na kennen c de helling -4 en onderschep 6 om de vergelijking y = -4