Antwoord:
Uitleg:
Als de twee partijen een verhouding hebben van
Dus als de zijkanten van een parallellogram zijn
De omtrek is
Verdeel beide kanten door
Steek deze weer in onze zijlengtes:
Twee tegenovergestelde zijden van een parallellogram hebben lengtes van 3. Als één hoek van het parallellogram een hoek van pi / 12 heeft en het gebied van het parallellogram 14 is, hoe lang zijn dan de andere twee zijden?
Veronderstellend een beetje van fundamentele Trigonometry ... Laat x de (gemeenschappelijke) lengte van elke onbekende kant zijn. Als b = 3 de maat is van de basis van het parallellogram, laat h de verticale hoogte ervan zijn. Het gebied van het parallellogram is bh = 14 Omdat b bekend is, hebben we h = 14/3. Van basis Trig, sin (pi / 12) = h / x. We kunnen de exacte waarde van de sinus vinden door een formule met een halve of een andere hoek te gebruiken. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dus ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2)
De omtrek van het parallellogram is 238 cm. De verhouding van de twee aangrenzende zijden is 3: 4. Wat zijn de lengtes van de vier zijden van het parallellogram?
51, 68, 54, 68 Omdat tegenovergestelde zijden van een parallellogram gelijk zijn, kunnen we zeggen dat de zijkanten in de verhouding 3: 4: 3: 4 zijn. Vermenigvuldigend in 238, krijgen we de lengtes 51, 68, 54, 68 (omdat er 14 delen zijn, is elk deel gelijk aan 17)
Een parallellogram heeft zijden A, B, C en D. Zijkanten A en B hebben een lengte van 3 en zijden C en D hebben een lengte van 7. Als de hoek tussen zijden A en C (7 pi) / 12 is, wat is dan het gebied van het parallellogram?
20.28 vierkante eenheden Het oppervlak van een parallellogram wordt gegeven door het product van de aangrenzende zijden vermenigvuldigd met de sinus van de hoek tussen de zijden. Hier zijn de twee aangrenzende zijden 7 en 3 en de hoek daartussen is 7 pi / 12 Nu Sin 7 pi / 12 radialen = sin 105 graden = 0.965925826 Vervanging, A = 7 * 3 * 0.965925826 = 20.28444 sq eenheden.