Antwoord:
20.28 vierkante eenheden
Uitleg:
Het gebied van een parallellogram wordt gegeven door het product van de aangrenzende zijden vermenigvuldigd met de sinus van de hoek tussen de zijden.
Hier zijn de twee aangrenzende zijden 7 en 3 en de hoek ertussen
Nu
Substitueren, A = 7 * 3 * 0.965925826 = 20.28444 vierkante eenheden.
Twee tegenovergestelde zijden van een parallellogram hebben lengtes van 3. Als één hoek van het parallellogram een hoek van pi / 12 heeft en het gebied van het parallellogram 14 is, hoe lang zijn dan de andere twee zijden?
Veronderstellend een beetje van fundamentele Trigonometry ... Laat x de (gemeenschappelijke) lengte van elke onbekende kant zijn. Als b = 3 de maat is van de basis van het parallellogram, laat h de verticale hoogte ervan zijn. Het gebied van het parallellogram is bh = 14 Omdat b bekend is, hebben we h = 14/3. Van basis Trig, sin (pi / 12) = h / x. We kunnen de exacte waarde van de sinus vinden door een formule met een halve of een andere hoek te gebruiken. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dus ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2)
Een driehoek heeft zijden A, B en C. De hoek tussen zijden A en B is (5pi) / 6 en de hoek tussen zijden B en C is pi / 12. Als zijde B een lengte heeft van 1, wat is dan het gebied van de driehoek?
Som van hoeken geeft een gelijkbenige driehoek. De helft van de enter-kant wordt berekend op basis van cos en de hoogte van sin. Het gebied wordt gevonden als dat van een vierkant (twee driehoeken). Oppervlakte = 1/4 De som van alle driehoeken in graden is 180 ^ o in graden of π in radialen. Daarom: a + b + c = π π / 12 + x + (5π) / 6 = π x = π-π / 12- (5π) / 6 x = (12π) / 12-π / 12- (10π) / 12 x = π / 12 We merken dat de hoeken a = b. Dit betekent dat de driehoek gelijkbenig is, wat leidt tot B = A = 1. De volgende afbeelding laat zien hoe de hoogte tegenovergesteld aan c berekend kan worden: Voor de b-hoek: sin15 ^ o = h
Twee ruiten hebben zijden met een lengte van 4. Als een ruit een hoek heeft met een hoek van pi / 12 en de andere een hoek heeft met een hoek van (5pi) / 12, wat is het verschil tussen de gebieden van de ruiten?
Verschil in Oppervlakte = 11.31372 "" vierkante eenheden Om het gebied van een ruit te berekenen Gebruik de formule Gebied = s ^ 2 * sin theta "" waar s = zijkant van de ruit en theta = hoek tussen twee zijden Bereken het gebied van ruit 1. Area = 4 * 4 * sin ((5pi) / 12) = 16 * sin 75^@=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~