Antwoord:
Uitleg:
# "een manier is om de discontinuïteiten van f (x) te vinden" # De noemer van f (x) kan niet nul zijn, omdat dit f (x) ongedefinieerd zou maken. Als de noemer gelijk is aan nul en het oplossen geeft de waarde die x niet kan zijn.
# "solve" 3x ^ 7 = 0rArrx = 0larrcolor (rood) "excluded value" #
#rArr "domein is" x inRR, x! = 0 #
#rArr (-oo, 0) uu (0, + oo) larrcolor (blauw) "intervalnotatie" #
#lim_ (xto + -oo), f (x) toc "(een constante)" #
# "tellers / deler delen door" x ^ 7 #
#f (x) = (1 / x ^ 7) / ((3x ^ 7) / x ^ 7) = (1 / x ^ 7) / 3 # zoals
# xto + -oo, f (x) tot0 / 3 = 0larrcolor (rood) "uitgesloten waarde" #
#rArr "bereik is" y inRR, y! = 0 #
#rArr (-oo, 0) uu (0, + oo) larrcolor (blauw) "intervalnotatie" # grafiek {1 / (3x ^ 7) -10, 10, -5, 5}
Als de functie f (x) een domein heeft van -2 <= x <= 8 en een bereik van -4 <= y <= 6 en de functie g (x) wordt gedefinieerd door de formule g (x) = 5f ( 2x)), wat is dan het domein en het bereik van g?
Hieronder. Gebruik basisfunctietransformaties om het nieuwe domein en bereik te vinden. 5f (x) betekent dat de functie verticaal wordt uitgerekt met een factor vijf. Daarom zal het nieuwe bereik een interval overspannen dat vijf keer groter is dan het origineel. In het geval van f (2x) wordt een horizontale rek met een factor van een halve toegepast op de functie. Daarom zijn de uiteinden van het domein gehalveerd. En voila!
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}