Antwoord:
Uitleg:
# "Een manier om te tekenen is om de onderscheppingen te vinden die" # zijn
# "waar de grafiek de x- en y-as kruist" #
# • "laat x = 0, in de vergelijking voor y-snijpunt" #
# • "laat y = 0, in de vergelijking voor x-snijpunt" #
# X = 0rArry-0 = 2rArry = 2larrcolor (rood) "y-as" #
# Y = 0rArr0-x = 2rArrx = -2larrcolor (rood) "x-intercept" #
# "plot de punten" (0,2) "en (-2,0) #
# "teken een rechte lijn door ze voor de grafiek" #
# "dit komt overeen met grafiek N in het diagram" # grafiek {x + 2 -10, 10, -5, 5}
Ik heb twee grafieken: een lineaire grafiek met een helling van 0,781 m / s en een grafiek die stijgt met een gemiddelde helling van 0,724 m / s. Wat zegt dit over de beweging in de grafieken?
Omdat de lineaire grafiek een constante helling heeft, heeft deze nulversnelling. De andere grafiek staat voor positieve versnelling. Versnelling wordt gedefinieerd als { Deltavelocity} / { Deltatime} Dus, als je een constante helling hebt, is er geen verandering in snelheid en is de teller nul. In de tweede grafiek verandert de snelheid, wat betekent dat het object versnelt
De grafiek van y = g (x) wordt hieronder gegeven. Schets een nauwkeurige grafiek van y = 2 / 3g (x) +1 op dezelfde reeks assen. Label de assen en ten minste 4 punten op uw nieuwe grafiek. Geef het domein en bereik van het origineel en de getransformeerde functie?
Zie de uitleg hieronder. Voor: y = g (x) "domein" is x in [-3,5] "bereik" is y in [0,4.5] Na: y = 2 / 3g (x) +1 "domein" is x in [ -3,5] "bereik" is y in [1,4] Dit zijn de 4 punten: (1) Voor: x = -3, =>, y = g (x) = g (-3) = 0 Na : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (-3,1) (2) Voor: x = 0, =>, y = g (x) = g (0) = 4.5 Na: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Het nieuwpunt is (0,4) (3) Voor: x = 3, =>, y = g (x) = g (3) = 0 Na: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (3,1) (4) Voor: x = 5, = >, y = g (x) = g (5) = 1 Na: y = 2 / 3g (x) + 1
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!