Antwoord:
Waarom? Omdat er gewoonlijk een specifiek en meetbaar evenwicht is tussen opgeloste opgeloste stof en onopgeloste opgeloste stof bij een gegeven temperatuur.
Uitleg:
Verzadiging definieert een evenwichtstoestand: de oplossnelheid van de opgeloste stof is gelijk aan de neerslagsnelheid van de opgeloste stof; als alternatief is de snelheid waarmee naar de oplossing wordt gegaan gelijk aan de snelheid waarmee de oplossing uit de oplossing komt.
Deze verzadiging hangt af van de temperatuur, de eigenschappen van het oplosmiddel en de aard (de oplosbaarheid van) de opgeloste stof. Een hete oplossing kan normaal meer opgeloste stof bevatten dan een koude oplossing. Als deze evenwichtstoestand niet wordt bereikt, kan in geval van onverzadiging het oplosmiddel meer opgeloste stof oplossen, maar in het geval van oververzadiging bevat het oplosmiddel MEER opgeloste stof dan in evenwicht zou zijn met onopgeloste opgeloste stof.
De discriminant van een kwadratische vergelijking is -5. Welk antwoord beschrijft het aantal en type oplossingen van de vergelijking: 1 complexe oplossing 2 echte oplossingen 2 complexe oplossingen 1 echte oplossing?
Uw kwadratische vergelijking heeft 2 complexe oplossingen. De discriminant van een kwadratische vergelijking kan ons alleen informatie geven over een vergelijking van de vorm: y = ax ^ 2 + bx + c of een parabool. Omdat de hoogste graad van dit polynoom 2 is, mag het niet meer dan 2 oplossingen bevatten. De discriminant is gewoon het spul onder het vierkantswortelsymbool (+ -sqrt ("")), maar niet het vierkantswortelsymbool zelf. + -sqrt (b ^ 2-4ac) Als de discriminant, b ^ 2-4ac, kleiner is dan nul (d.w.z. een negatief getal), dan zou je een negatief hebben onder een vierkantswortelsymbool. Negatieve waarden onder
Een jongen heeft 20% kans om op een doelwit te raken. Laat p de kans aanduiden om voor het eerst het doelwit te raken bij de nde proef. Als p voldoet aan de ongelijkheid 625p ^ 2 - 175p + 12 <0 dan is de waarde van n?
N = 3 p (n) = "Voor de 1e keer op de n-de proef slaan" => p (n) = 0.8 ^ (n-1) * 0.2 "Grens van de ongelijkheid" 625 p ^ 2 - 175 p + 12 = 0 "" is de oplossing van een kwadratische vergelijking in "p": "" schijf: "175 ^ 2 - 4 * 12 * 625 = 625 = 25 ^ 2 => p = (175 pm 25) / 1250 = 3/25 "of" 4/25 "" Dus "p (n)" is negatief tussen deze twee waarden. " p (n) = 3/25 = 0.8 ^ (n-1) * 0.2 => 3/5 = 0.8 ^ (n-1) => log (3/5) = (n-1) log (0.8) = > n = 1 + log (3/5) / log (0.8) = 3.289 .... p (n) = 4/25 = ... => n = 1 + log (4/5) /
Gebruik de discriminant om het aantal en soort oplossingen te bepalen die de vergelijking heeft? x ^ 2 + 8x + 12 = 0 Geen echte oplossing B.een echte oplossing C. twee rationele oplossingen D. twee irrationele oplossingen
C. twee Rationele oplossingen De oplossing voor de kwadratische vergelijking a * x ^ 2 + b * x + c = 0 is x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In het betreffende probleem, a = 1, b = 8 en c = 12 Vervanging, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 of x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 en x = (-8 - 4) / 2 x = (- 4) / 2 en x = (-12) / 2 x = - 2 en x = -6