Antwoord:
Hier is een aanpak …
Uitleg:
Laten we eens kijken…
Een lineaire is in de vorm
We kunnen de concaafheid van een functie vinden door zijn dubbele afgeleide te vinden (
Laten we het dan doen!
Dus dit vertelt ons dat lineaire functies op elk gegeven punt moeten buigen.
Wetende dat de grafiek van lineaire functies een rechte lijn is, is dit niet logisch, nietwaar?
Daarom is er geen concaaf punt op de grafieken van lineaire functies.
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
Laat f een lineaire functie zijn zodanig dat f (-1) = - 2 en f (1) = 4. Zoek een vergelijking voor de lineaire functie f en teken dan y = f (x) in het coördinatenraster?
Y = 3x + 1 Aangezien f een lineaire functie is, dwz een lijn, zodanig dat f (-1) = - 2 en f (1) = 4, betekent dit dat deze doorloopt (-1, -2) en (1,4 ) Merk op dat er maar één lijn kan passeren, gegeven elke twee punten en als punten (x_1, y_1) en (x_2, y_2) zijn, is de vergelijking (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) en daarom is de vergelijking van de lijn die doorloopt (-1, -2) en (1,4) is (x - (- 1)) / (1 - (- 1)) = (y - (- 2 )) / (4 - (- 2)) of (x + 1) / 2 = (y + 2) / 6 andd vermenigvuldigen met 6 of 3 (x + 1) = y + 2 of y = 3x + 1