Laat, de coördinaat van
Dus indien
Nu, midden van
duidelijk, dit punt zal liggen op
Zo,
of,
En dit zal net zo goed liggen
zo,
of,
Dus de coördinaat is
De positievector van A heeft de Cartesiaanse coördinaten (20,30,50). De positievector van B heeft de Cartesiaanse coördinaten (10,40,90). Wat zijn de coördinaten van de positievector van A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Een object rust op (6, 7, 2) en versnelt constant met een snelheid van 4/3 m / s ^ 2 als het naar punt B gaat. Als punt B zich op (3, 1, 4) bevindt, hoe lang zal het duren voordat het object punt B bereikt? Stel dat alle coördinaten in meters zijn.
T = 3.24 Je kunt de formule gebruiken s = ut + 1/2 (op ^ 2) u is beginsnelheid s is afgelegde afstand t is tijd a is versnelling Nu begint het vanuit rust dus beginsnelheid is 0 s = 1/2 (op ^ 2) Om s te vinden tussen (6,7,2) en (3,1,4) gebruiken we afstandsformule s = sqrt ((6-3) ^ 2 + (7-1) ^ 2 + (2 -4) ^ 2) s = sqrt (9 + 36 + 4) s = 7 Versnelling is 4/3 meter per seconde per seconde 7 = 1/2 ((4/3) t ^ 2) 14 * (3/4 ) = t ^ 2 t = sqrt (10.5) = 3.24
P is het middelpunt van het lijnsegment AB. De coördinaten van P zijn (5, -6). De coördinaten van A zijn (-1,10).Hoe vind je de coördinaten van B?
B = (x_2, y_2) = (11, -22) Als één eindpunt (x_1, y_1) en middelpunt (a, b) van een lijnsegment bekend is, kunnen we de middelpuntformule gebruiken om zoek het tweede eindpunt (x_2, y_2). Hoe de middelpuntformule te gebruiken om een eindpunt te vinden? (x_2, y_2) = (2a-x_1, 2b-y_1) Hier, (x_1, y_1) = (- 1, 10) en (a, b) = (5, -6) So, (x_2, y_2) = (2 kleuren (rood) ((5)) -kleur (rood) ((- 1)), 2 kleuren (rood) ((- 6)) - kleur (rood) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #