Antwoord:
Zie uitleg …
Uitleg:
Hier is een schets van een bewijs door tegenspraak:
Veronderstellen
Zonder verlies van algemeenheid, kunnen we veronderstellen dat
Per definitie:
# 5 = (p / q) ^ 2 = p ^ 2 / q ^ 2 #
Vermenigvuldig beide einden met
# 5 q ^ 2 = p ^ 2 #
Zo
Sindsdien
Zo
Dus we hebben:
# 5 q ^ 2 = p ^ 2 = (5m) ^ 2 = 5 * 5 * m ^ 2 #
Verdeel beide uiteinden door
# q ^ 2 = 5 m ^ 2 #
Verdeel beide uiteinden door
# 5 = q ^ 2 / m ^ 2 = (q / m) ^ 2 #
Zo
Nu
Dus onze hypothese dat
Laat een niet-nul rationeel getal zijn en b een irrationeel getal zijn. Is a - b rationeel of irrationeel?
Zodra u een irrationeel getal in een berekening opneemt, is de waarde irrationeel. Zodra u een irrationeel getal in een berekening opneemt, is de waarde irrationeel. Overweeg pi. pi is irrationeel. Daarom zijn 2pi, "" 6+ pi, "" 12-pi, "" pi / 4, "" pi ^ 2 "" sqrtpi enz. Ook irrationeel.
Wat is een reëel getal, een geheel getal, een geheel getal, een rationeel getal en een irrationeel getal?
Uitleg Hieronder Rationele getallen zijn er in 3 verschillende vormen; gehele getallen, breuken en terminerende of terugkerende decimalen, zoals 1/3. Irrationele nummers zijn behoorlijk 'rommelig'. Ze kunnen niet worden geschreven als breuken, het zijn eindeloze, niet-herhalende decimalen. Een voorbeeld hiervan is de waarde van π. Een geheel getal kan een geheel getal worden genoemd en is een positief of een negatief getal, of nul. Een voorbeeld hiervan is 0, 1 en -365.
Wat is de vierkantswortel van 7 + vierkantswortel van 7 ^ 2 + vierkantswortel van 7 ^ 3 + vierkantswortel van 7 ^ 4 + vierkantswortel van 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Het eerste wat we kunnen doen is de wortels annuleren met de wortels met de even krachten. Omdat: sqrt (x ^ 2) = x en sqrt (x ^ 4) = x ^ 2 voor elk getal, kunnen we alleen maar zeggen dat sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 herschreven worden als 7 ^ 2 * 7, en die 7 ^ 2 kan uit de wortel komen! Hetzelfde is van toepassing op 7 ^ 5 maar het is herschreven als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7