Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
Eerst moeten we het middelpunt van de twee punten in het probleem vinden. De formule om het midden van een lijnsegment te vinden geeft de twee eindpunten:
Waar
Vervanging geeft:
Vervolgens moeten we de helling van de lijn met de twee punten in het probleem vinden. De helling kan worden gevonden met behulp van de formule:
Waar
Vervanging van de waarden uit de punten in het probleem geeft:
Laten we nu de helling van de verticale lijn noemen
Vervanging geeft:
We kunnen nu de formule met punthelling gebruiken om een vergelijking te vinden voor de lijn loodrecht door het midden van de twee punten in het probleem. De punthellingsvorm van een lineaire vergelijking is:
Waar
De door ons berekende helling substitueren en de waarden van het middelpunt dat we hebben berekend geeft:
Indien nodig kunnen we dit oplossen
Waar
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (5,3) en (8,8) halverwege de twee punten?
De vergelijking van de lijn is 5 * y + 3 * x = 47 De coördinaten van het middelpunt zijn [(8 + 5) / 2, (8 + 3) / 2] of (13 / 2,11 / 2); De helling ml van de lijn die doorloopt (5,3) en (8,8) is (8-3) / (8-5) of5 / 3; We weten dat de conditie van haaksheid van twee lijnen gelijk is aan m1 * m2 = -1, waarbij m1 en m2 de hellingen zijn van de loodrechte lijnen. Dus de helling van de lijn zal zijn (-1 / (5/3)) of -3/5 Nu is de lijnvergelijking die door het middelpunt gaat (13 / 2,11 / 2) y-11/2 = -3/5 (x-13/2) of y = -3 / 5 * x + 39/10 + 11/2 of y + 3/5 * x = 47/5 of 5 * y + 3 * x = 47 [Antwoord]
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (-5,3) en (-2,9) halverwege de twee punten?
Y = -1 / 2x + 17/4> "we moeten de helling m en het middelpunt van de" "lijn door de gegeven coördinaatpunten" "vinden om de gradiëntformule" kleur (blauw) "te gebruiken" • kleur (wit) (x) m = (y_2-y_1) / (x_2-x_1) "let" (x_1, y_1) = (- 5,3) "en" (x_2, y_2) = (- 2,9) rArrm = (9-3) / (- 2 - (- 5)) = 6/3 = 2 "de helling van een lijn loodrecht hierop is" • kleur (wit) (x) m_ (kleur (rood) "loodlijn ") = - 1 / m = -1 / 2" het middelpunt is het gemiddelde van de coördinaat van de "" gegeven punten "rArrM = [1/2 (
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (-5,3) en (4,9) halverwege de twee punten?
Y = -1 1 / 2x + 2 1/4 De helling een lijn die loodrecht staat op een gegeven lijn, is de inverse helling van de gegeven lijn m = a / b de loodrechte helling zou m = -b / a zijn De formule voor de helling van een lijn op basis van twee coördinaatpunten is m = (y_2-y_1) / (x_2-x_1) voor de coördinaatpunten (-5,3) en (4,9) x_1 = -5 x_2 = 4 y_1 = 3 y_2 = 9 m = (9-3) / (4 - (- 5)) m = 6/9 De helling is m = 6/9 de loodrechte helling is de reciproque (-1 / m) m = -9 / 6 Om het middelpunt van de lijn te vinden, moeten we de middelpuntformule gebruiken ((x_1 + x_2) / 2, (y_1 + y_2) / 2) ((-5 + 4) / 2, (3 + 9) / 2) (-1 / 2