Antwoord:
De vergelijking van de lijn is
Uitleg:
De coördinaten van het middelpunt zijn
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (-8,10) en (-5,12) halverwege de twee punten?
Zie een oplossingsprocedure hieronder: Eerst moeten we het middelpunt van de twee punten in het probleem vinden. De formule om het midden van een lijnsegment te vinden, geeft de twee eindpunten: M = ((kleur (rood) (x_1) + kleur (blauw) (x_2)) / 2, (kleur (rood) (y_1) + kleur (blauw) (y_2)) / 2) Waar M het middelpunt is en de gegeven punten zijn: (kleur (rood) (x_1), kleur (rood) (y_1)) en (kleur (blauw) (x_2), kleur (blauw) (y_2)) Vervangen geeft: M = ((kleur (rood) (- 8) + kleur (blauw) (- 5)) / 2, (kleur (rood) (10) + kleur (blauw) ( 12)) / 2) M = (-13/2, 22/2) M = (-6.5, 11) Vervolgens moeten we de helling van de lijn m
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (-5,3) en (-2,9) halverwege de twee punten?
Y = -1 / 2x + 17/4> "we moeten de helling m en het middelpunt van de" "lijn door de gegeven coördinaatpunten" "vinden om de gradiëntformule" kleur (blauw) "te gebruiken" • kleur (wit) (x) m = (y_2-y_1) / (x_2-x_1) "let" (x_1, y_1) = (- 5,3) "en" (x_2, y_2) = (- 2,9) rArrm = (9-3) / (- 2 - (- 5)) = 6/3 = 2 "de helling van een lijn loodrecht hierop is" • kleur (wit) (x) m_ (kleur (rood) "loodlijn ") = - 1 / m = -1 / 2" het middelpunt is het gemiddelde van de coördinaat van de "" gegeven punten "rArrM = [1/2 (
Wat is de vergelijking van de lijn die loodrecht staat op de lijn die doorloopt (-5,3) en (4,9) halverwege de twee punten?
Y = -1 1 / 2x + 2 1/4 De helling een lijn die loodrecht staat op een gegeven lijn, is de inverse helling van de gegeven lijn m = a / b de loodrechte helling zou m = -b / a zijn De formule voor de helling van een lijn op basis van twee coördinaatpunten is m = (y_2-y_1) / (x_2-x_1) voor de coördinaatpunten (-5,3) en (4,9) x_1 = -5 x_2 = 4 y_1 = 3 y_2 = 9 m = (9-3) / (4 - (- 5)) m = 6/9 De helling is m = 6/9 de loodrechte helling is de reciproque (-1 / m) m = -9 / 6 Om het middelpunt van de lijn te vinden, moeten we de middelpuntformule gebruiken ((x_1 + x_2) / 2, (y_1 + y_2) / 2) ((-5 + 4) / 2, (3 + 9) / 2) (-1 / 2