Antwoord:
Doe een beetje factoring en annulering om te krijgen
Uitleg:
Bij oneindige grenzen is de algemene strategie om te profiteren van het feit dat
Begin met het in rekening brengen van een
Het probleem is nu aangebroken
Omdat dit een limiet is bij positieve oneindigheid (
Nu kunnen we het
En eindelijk zien wat er gebeurt als
Omdat
Hoe vind je de limiet van (1 / (h + 2) ^ 2 - 1/4) / h als h 0 nadert?
We moeten eerst de expressie manipuleren om het in een handigere vorm te plaatsen Laten we aan de expressie werken (1 / (h + 2) ^ 2 -1/4) / h = ((4- (h + 2) ^ 2) / (4 (h + 2) ^ 2)) / h = ((4- (h ^ 2 + 4h + 4)) / (4 (h + 2) ^ 2)) / h = (((4-h ^ 2-4h-4)) / (4 (h + 2) ^ 2)) / h = (- h ^ 2-4h) / (4 (h + 2) ^ 2 h) = (h (-h- 4)) / (4 (h + 2) ^ 2 h) = (-h-4) / (4 (h + 2) ^ 2) Nu limieten nemen wanneer h-> 0 we hebben: lim_ (h-> 0 ) (- h-4) / (4 (h + 2) ^ 2) = (-4) / 16 = -1 / 4
Hoe vind je de limiet van sin ((x-1) / (2 + x ^ 2)) als x nadert oo?
Factoriseer het maximale vermogen van x en annuleer de gemeenschappelijke factoren van de teller en de teller. Antwoord is: lim_ (x-> oo) sin ((x-1) / (2 + x ^ 2)) = 0 lim_ (x-> oo) sin ((x-1) / (2 + x ^ 2) ) lim_ (x-> oo) sin ((1 * x-1 * x / x) / (2 * x ^ 2 / x ^ 2 + 1 * x ^ 2)) lim_ (x-> oo) sin (( x * (1-1 / x)) / (x ^ 2 * (2 / x ^ 2 + 1))) lim_ (x-> oo) sin ((cancel (x) (1-1 / x)) / (x ^ cancel (2) (2 / x ^ 2 + 1))) lim_ (x-> oo) sin ((1-1 / x) / (x (2 / x ^ 2 + 1))) Nu ga je kan eindelijk de limiet nemen, erop wijzend dat 1 / oo = 0: sin ((1-0) / (oo * (0 + 1))) sin (1 / oo) sin0 0
Hoe vind je de limiet van (2x-8) / (sqrt (x) -2) als x 4 nadert?
8 Zoals u kunt zien, zult u een onbepaalde vorm van 0/0 vinden als u probeert in te pluggen. Dat is maar goed ook, want u kunt de regel van L'Hospital direct gebruiken, die zegt if lim_ (x -> a) ( f (x)) / (g (x)) = 0/0 of oo / oo alles wat je hoeft te doen is om de afgeleide van de teller en de noemer apart te vinden en dan de waarde van x in te pluggen. => lim_ (x-> a) (f '(x)) / (g' (x) f (x) = lim_ (x-> 4) (2x-8) / (sqrtx-2) = 0/0 f (x) = lim_ (x-> 4) (2x-8) / (x ^ (1/2) -2) f '(x) = lim_ (x-> 4) (2) / (1 / 2x ^ (- 1/2)) = lim_ (x-> 4) (2) / (1 / (2sqrtx)) = (2) / (1/4) = 8 Ik hoop