Hoe vind je de limiet van (1 / (h + 2) ^ 2 - 1/4) / h als h 0 nadert?

Hoe vind je de limiet van (1 / (h + 2) ^ 2 - 1/4) / h als h 0 nadert?
Anonim

Antwoord:

We moeten eerst de uitdrukking manipuleren om het in een handigere vorm te plaatsen

Uitleg:

Laten we aan de uitdrukking werken

# (1 / (h + 2) ^ 2 -1/4) / h = ((4- (h + 2) ^ 2) / (4 (h + 2) ^ 2)) / h = ((4- (h ^ 2 + 4h + 4)) / (4 (h + 2) ^ 2)) / h = (((4-h ^ 2-4h-4)) / (4 (h + 2) ^ 2)) / h = (- h ^ 2-4h) / (4 (h + 2) ^ 2 h) = (h (-h-4)) / (4 (h + 2) ^ 2 h) = (-h -4) / (4 (h + 2) ^ 2) #

Nu limieten nemen wanneer # h-> 0 # wij hebben:

#lim_ (h-> 0) (- h-4) / (4 (h + 2) ^ 2) = (-4) / 16 = -1 / 4 #