De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.
Punten (-9, 2) en (-5, 6) zijn eindpunten van de diameter van een cirkel. Wat is de lengte van de diameter? Wat is het middelpunt C van de cirkel? Gegeven het punt C dat u in deel (b) hebt gevonden, vermeldt u het punt symmetrisch ten opzichte van C rond de x-as
D = sqrt (32) = 4sqrt (2) ~~ 5.66 center, C = (-7, 4) symmetrisch punt over x-as: (-7, -4) Gegeven: eindpunten van de diameter van een cirkel: (- 9, 2), (-5, 6) Gebruik de afstandsformule om de lengte van de diameter te vinden: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Gebruik de middelpuntformule om zoek het midden: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Gebruik de coördinaatregel voor reflectie over de x-as (x, y) -> (x, -y): (-7, 4) symmetrisch p