Antwoord:
Domein:
Uitleg:
Vanaf het begin weet u dat het domein van de functie alleen waarden van mag bevatten
Met andere woorden, u moet elke waarde van. Uitsluiten van het domein van de functie
#x - 3x ^ 2 <0 #
De uitdrukking onder de vierkantswortel kan worden verwerkt om te geven
#x - 3x ^ 2 = x * (1 - 3x) #
Maak deze expressie gelijk aan nul om de waarden van te vinden
#x * (1 - 3x) = 0 impliceert {(x = 0), (x = 1/3):} #
Dus, om deze uitdrukking te zijn positief, je moet hebben
Nu voor
# {(x <0), (1 - 3x> 0):} impliceert x * (1-3x) <0 #
Evenzo, voor
# {(x> 0), (1 - 3x> 0):} impliceert x * (1-3x) <0 #
Dit betekent dat de enige waarden van
Een andere waarde van
grafiek {sqrt (x-3x ^ 2) -0.466, 0.866, -0.289, 0.377}
Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
Wat is het domein van de gecombineerde functie h (x) = f (x) - g (x), als het domein van f (x) = (4,4.5] en het domein van g (x) is [4, 4.5 )?
Het domein is D_ {f-g} = (4,4.5). Zie uitleg. (f-g) (x) kan alleen worden berekend voor die x, waarvoor zowel f als g zijn gedefinieerd. Dus we kunnen dat schrijven: D_ {f-g} = D_fnnD_g Hier hebben we D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}