Antwoord:
Zie hieronder.
Uitleg:
Merk op dat voor
waaruit de bevestiging blijkt.
Nu door eindige inductie.
Voor
nu veronderstel dat
dus het is waar.
De Main Street Market verkoopt sinaasappelen voor $ 3,00 voor vijf pond en appels voor $ 3,99 voor drie pond. De Off Street Market verkoopt sinaasappels voor $ 2,59 voor vier pond en appels voor $ 1,98 voor twee pond. Wat is de eenheidsprijs voor elk artikel in elke winkel?
Zie een oplossingsprocedure hieronder: Main Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_m O_m = ($ 3,00) / (5 lb) = ($ 0,60) / (lb) = $ 0,60 per pond Appelen - Laten we de eenheidsprijs noemen: A_m A_m = ($ 3,99) / (3 lb) = ($ 1,33) / (lb) = $ 1,33 per pond Off Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_o O_o = ($ 2,59) / (4 lb) = ($ 0,65) / (lb) = $ 0,65 per pond Appels - Laten we de eenheidsprijs noemen: A_o A_o = ($ 1,98) / (2 lb) = ($ 0,99) / (lb) = $ 0,99 per pond
De prijs voor een kindenticket voor het circus is $ 4,75 minder dan de prijs voor het ticket voor volwassenen. Als u de prijs voor het ticket van het kind met de variabele x vertegenwoordigt, hoe zou u dan de algebraïsche uitdrukking voor de ticketprijs van de volwassene schrijven?
Ticket voor volwassenen kost $ x + $ 4,75 Expressies lijken altijd ingewikkelder wanneer variabelen of grote of vreemde getallen worden gebruikt. Laten we eenvoudigere waarden als voorbeeld gebruiken om te beginnen met ... De prijs van een kindenticket is kleur (rood) ($ 2) lager dan die van een volwassene. Het ticket van de volwassene kost daarom kleur (rood) ($ 2) meer dan die van een kind. Als de prijs van een kindenticket kleur (blauw) ($ 5) is, kost een volwassenenticket kleur (blauw) ($ 5) kleur (rood) (+ $ 2) = $ 7 Doe nu hetzelfde met de echte waarden .. De prijs van een kindenticket is kleur (rood) ($ 4,75) lager
Er zijn 120 studenten die wachten op een excursie. De studenten zijn genummerd van 1 tot 120, alle even genummerde studenten gaan op bus1, die deelbaar zijn door 5 gaan op bus2 en degenen waarvan het aantal deelbaar is door 7 gaan op bus3. Hoeveel studenten zijn er niet in de bus geweest?
41 studenten stapten niet in een bus. Er zijn 120 studenten. Op bus 1 wordt zelfs genummerd, d.w.z. elke tweede student gaat, dus 120/2 = 60 studenten gaan. Merk op dat elke tiende student, d.w.z. in alle 12 studenten, die op Bus2 hadden kunnen gaan, vertrokken zijn op Bus1. Aangezien elke vijfde student in Bus2 gaat, is het aantal studenten dat in de bus gaat (minder dan 12 die in Bus1 zijn gegaan) 120 / 5-12 = 24-12 = 12 Nu zijn die deelbaar door 7 in Bus3, dat is 17 (zoals 120/7 = 17 1/7), maar die met nummers {14,28,35,42,56,70,84,98,105,112} - bij alle 10 zijn ze al verdwenen in Bus1 of Bus2. Dus in Bus3 ga 17-10 = 7