Antwoord:
Uitleg:
Laat
=
=
=
=
Antwoord:
Uitleg:
Je zou dit kunnen doen met
Dit is wat we doen. Laten we eerst deze uitdrukking opsplitsen in het volgende product:
Laten we die nu vereenvoudigen. We weten dat
Nu moeten we een kijkje nemen naar onze afgeleide tabel en eraan herinneren dat:
Dit is precies wat we in onze integraal hebben BEHALVE er is een negatief teken waar we rekening mee moeten houden. We moeten dus tweemaal vermenigvuldigen met -1 om hiermee rekening te houden. Merk op dat dit de waarde van de integraal sindsdien niet verandert
En dit evalueert om:
En dat is uw antwoord! Je zou moeten weten hoe je dit moet gebruiken
Hoop dat het geholpen heeft:)
Hoe evalueer je de integraal van int (dt) / (t-4) ^ 2 van 1 tot 5?
Substituut x = t-4 Antwoord is, als je inderdaad wordt gevraagd om alleen de integraal te vinden: -4/3 Als je het gebied zoekt, is het niet zo eenvoudig. int_1 ^ 5dt / (t-4) ^ 2 Set: t-4 = x Daarom is het verschil: (d (t-4)) / dt = dx / dt 1 = dx / dt dt = dx En de limieten: x_1 = t_1-4 = 1-4 = -3 x_2 = t_2-4 = 5-4 = 1 Vervang nu deze drie gevonden waarden: int_1 ^ 5dt / (t-4) ^ 2 int _ (- 3) ^ 1dx / x ^ 2 int _ (- 3) ^ 1x ^ -2dx 1 / (- 2 + 1) [x ^ (- 2 + 1)] _ (- 3) ^ 1 - [x ^ -1] _ (- 3) ^ 1 - [1 / x] _ (- 3) ^ 1 - (1 / 1-1 / (- 3)) - (1 + 1/3) -4/3 OPMERKING: LEES DIT NIET ALS JE NIET AANGETAST ZIJN HOE VIND JE HET GEBI
Hoe evalueer je de definitieve integraal int (2t-1) ^ 2 van [0,1]?
1/3 int_0 ^ 1 (2t-1) ^ 2dt Laat u = 2t-1 betekent du = 2dt daarom dt = (du) / 2 De grenzen veranderen: t: 0rarr1 impliceert u: -1rarr1 Integraal wordt: 1 / 2int_ ( -1) ^ 1u ^ 2du = 1/2 [1 / 3u ^ 3] _ (- 1) ^ 1 = 1/6 [1 - (-1)] = 1/3
Hoe evalueer je de definitieve integraal int sec ^ 2x / (1 + tan ^ 2x) van [0, pi / 4]?
Pi / 4 Merk op dat vanaf de tweede Pythagorische identiteit dat 1 + tan ^ 2x = sec ^ 2x Dit betekent dat de breuk gelijk is aan 1 en dit ons de vrij eenvoudige integraal van int_0 ^ (pi / 4) dx = x | _0 ^ (pi / 4) = pi / 4