Antwoord:
Uitleg:
Breng eerst de vergelijking in het formulier
De helling van de loodlijn is de negatieve reciproke van de oorspronkelijke lijn. Het verloop van de oorspronkelijke regel is
Zet dit in de vergelijking
Vinden
De vergelijking van de lijn is
Nu voor grafieken.
Je weet dat de lijn het punt passeert
Je weet dat het y-snijpunt is
Het verloop van de lijn is
Nu heb je 3 punten, voeg ze bij elkaar en verleng de lijn.
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Lijn L heeft vergelijking 2x-3y = 5 en lijn M gaat door het punt (2, 10) en staat loodrecht op lijn L. Hoe bepaal je de vergelijking voor lijn M?
In hellingspuntvorm is de vergelijking van lijn M y-10 = -3 / 2 (x-2). In hellingsinterceptievorm is dit y = -3 / 2x + 13. Om de helling van lijn M te vinden, moeten we eerst de helling van lijn L afleiden. De vergelijking voor lijn L is 2x-3y = 5. Dit is in standaardvorm, die ons niet direct de helling van L vertelt. We kunnen deze vergelijking echter hiërarchisch hiërarchisch rangschikken door y op te lossen: 2x-3y = 5 kleur (wit) (2x) -3y = 5-2x "" (2x aftrekken van beide kanten) kleur (wit) (2x-3) y = (5-2x) / (- 3) "" (deel beide zijden in door -3) kleur (wit) (2x- 3) y = 2/3 x-5/3 "
Bewijs dat, gegeven een lijn en punt niet op die lijn, er precies één lijn is die dat punt loodrecht door die lijn passeert? Je kunt dit wiskundig of door constructie doen (de oude Grieken deden dit)?
Zie hieronder. Laten we aannemen dat de gegeven lijn AB is, en het punt is P, dat niet op AB staat. Laten we nu aannemen dat we een haakse PO op AB hebben getekend. We moeten bewijzen dat deze PO de enige lijn is die door P loopt en loodrecht op AB staat. Nu zullen we een constructie gebruiken. Laten we een nieuwe loodrechte pc bouwen op AB vanaf punt P. Nu het bewijs. We hebben OP loodrecht AB [Ik kan het loodrechte teken niet gebruiken, hoe oud het is] En, ook, PC loodrecht AB. Dus OP || PC. [Beide zijn loodlijnen op dezelfde regel.] Nu hebben zowel OP als pc punt P gemeen en zijn ze parallel. Dat betekent dat ze zouden