Antwoord:
Uitleg:
Ik ben niet helemaal zeker van je notatie hier, ik neem aan dat je dit bedoelt
Om dit probleem op te lossen, moeten we alleen maar rationaliseren. Het concept van rationaliseren is vrij eenvoudig, dat weten we
Dus om deze wortels van de noemer weg te werken, zullen we het vermenigvuldigen met
Maar - en er is altijd een maar - aangezien dit een fractie is, kan ik niet zomaar vermenigvuldigen wat in de noemer staat. Ik moet zowel de teller als de noemer met hetzelfde vermenigvuldigen, dus het gaat:
We kunnen een 2 op bewijs plaatsen, zowel op de teller als op de noemer
17 is een priemgetal dus we hebben hier niet veel meer te doen. Je kunt die 6 op bewijs zetten op de teller, of evalueren
Wat is [5 (vierkantswortel van 5) + 3 (vierkantswortel van 7)] / [4 (vierkantswortel van 7) - 3 (vierkantswortel van 5)]?
(159 + 29sqrt (35)) / 47 kleur (wit) ("XXXXXXXX") aangenomen dat ik geen rekenfouten heb gemaakt (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Rationaliseer de noemer door te vermenigvuldigen met het geconjugeerde: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Wat is de vereenvoudigde vorm van vierkantswortel van 10 - vierkantswortel van 5 over vierkantswortel van 10 + vierkantswortel van 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) kleur (wit) ("XXX") = annuleren (sqrt (5)) / annuleren (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) kleur (wit) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) kleur (wit) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) kleur (wit) ("XXX") = (2-2sqrt2 + 1) / (2-1) kleur (wit) ( "XXX") = 3-2sqrt (2)
Wat is de vierkantswortel van 7 + vierkantswortel van 7 ^ 2 + vierkantswortel van 7 ^ 3 + vierkantswortel van 7 ^ 4 + vierkantswortel van 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Het eerste wat we kunnen doen is de wortels annuleren met de wortels met de even krachten. Omdat: sqrt (x ^ 2) = x en sqrt (x ^ 4) = x ^ 2 voor elk getal, kunnen we alleen maar zeggen dat sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 herschreven worden als 7 ^ 2 * 7, en die 7 ^ 2 kan uit de wortel komen! Hetzelfde is van toepassing op 7 ^ 5 maar het is herschreven als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7