Antwoord:
Uitleg:
Stap 1: Je hebt twee punten in je vraag:
Stap 2: Laten we dus naar het eerste punt van de vraag kijken.
Stap 3: Laten we die cijfers in onze vergelijking stoppen. Dus we hebben
Dat geeft ons een antwoord van
Stap 4: Laten we nu onze vergelijking van een lijnformule gebruiken. Die helling-interceptievergelijking van een lijn is
Stap 5: Sluit een van de punten aan: een van beide
Of je hebt
Stap 6: Jij hebt
Stap 7: Vermenigvuldig de
Trek de
OF
Vermenigvuldigen
Aftrekken
Stap 8: Dus je hebt gevonden
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
De punt-hellingsvorm van de vergelijking van de lijn die doorloopt (-5, -1) en (10, -7) is y + 7 = -2 / 5 (x-10). Wat is de standaardvorm van de vergelijking voor deze regel?
2 / 5x + y = -3 Het formaat van de standaardvorm voor een vergelijking van een lijn is Ax + By = C. De vergelijking die we hebben, y + 7 = -2/5 (x-10) is momenteel in punt helling vorm. Het eerste dat je moet doen is het verdelen van de -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Laten we nu 4 van beide kanten van de kant aftrekken vergelijking: y + 3 = -2 / 5x Aangezien de vergelijking Ax + By = C moet zijn, laten we 3 naar de andere kant van de vergelijking en -2 / 5x naar de andere kant van de vergelijking verplaatsen: 2 / 5x + y = -3 Deze vergelijking is nu in standaardvorm.
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.