Antwoord:
Formule gebruiken
Uitleg:
Antwoord:
Uitleg:
# "de vergelijking van een lijn in" kleur (blauw) "hellingsintercept" # is.
# • kleur (wit) (x) y = mx + b #
# "waar m de helling is en b het y-snijpunt" #
# "hier" m = -2 #
# rArry = -2x + blarrcolor (blauw) "is de gedeeltelijke vergelijking" #
# "om b substituut" (6, -1) "te vinden in de gedeeltelijke vergelijking" #
# -1 = -12 + brArrb = -1 + 12 = 11 #
# rArry = -2x + 11larrcolor (red) "in slope-intercept-formulier" # grafiek {(y + 2x-11) ((x-6) ^ 2 + (y + 1) ^ 2-0.04) = 0 -10, 10, -5, 5}
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
De punt-hellingsvorm van de vergelijking van de lijn die doorloopt (-5, -1) en (10, -7) is y + 7 = -2 / 5 (x-10). Wat is de standaardvorm van de vergelijking voor deze regel?
2 / 5x + y = -3 Het formaat van de standaardvorm voor een vergelijking van een lijn is Ax + By = C. De vergelijking die we hebben, y + 7 = -2/5 (x-10) is momenteel in punt helling vorm. Het eerste dat je moet doen is het verdelen van de -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Laten we nu 4 van beide kanten van de kant aftrekken vergelijking: y + 3 = -2 / 5x Aangezien de vergelijking Ax + By = C moet zijn, laten we 3 naar de andere kant van de vergelijking en -2 / 5x naar de andere kant van de vergelijking verplaatsen: 2 / 5x + y = -3 Deze vergelijking is nu in standaardvorm.
Wat is de vergelijking van een regel die doorloopt (2, -4) en een helling van 0 heeft?
Zie onderstaande oplossingsverklaring: Per definitie is een lijn met een helling van 0 een horizontale lijn. Horizontale lijnen hebben dezelfde waarde voor y voor elke waarde van x. In dit probleem is de y-waarde -4 Daarom is de vergelijking van deze regel: y = -4