Antwoord:
Uitleg:
Noem een geheel getal
De volgende
We willen de waarde voor vinden
Dus de andere drie nummers zijn
Drie opeenvolgende gehele getallen kunnen worden weergegeven door n, n + 1 en n + 2. Als de som van drie opeenvolgende gehele getallen 57 is, wat zijn dan de gehele getallen?
18,19,20 Som is de optelling van het aantal, zodat de som van n, n + 1 en n + 2 kan worden weergegeven als, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 dus ons eerste gehele getal is 18 (n) onze tweede is 19, (18 + 1) en onze derde is 20, (18 + 2).
Het verdrievoudigen van de grootste van twee opeenvolgende even gehele getallen geeft hetzelfde resultaat als het aftrekken van 10 van het mindere even gehele getal. Wat zijn de gehele getallen?
Ik vond -8 en -6 Noem je gehele getallen: 2n en 2n + 2 heb je: 3 (2n + 2) = 2n-10 herschikken: 6n + 6 = 2n-10 6n-2n = -6-10 4n = -16 n = -16 / 4 = -4 Dus de gehele getallen moeten zijn: 2n = 2 (-4) = - 8 2n + 2 = 2 (-4) + 2 = -6
"Lena heeft 2 opeenvolgende gehele getallen.Ze merkt dat hun som gelijk is aan het verschil tussen hun vierkanten. Lena kiest nog eens 2 opeenvolgende gehele getallen en merkt hetzelfde op. Bewijs algebra dat dit geldt voor elke 2 opeenvolgende gehele getallen?
Zie de toelichting alstublieft. Bedenk dat de opeenvolgende gehele getallen met 1 verschillen. Dus als m één geheel getal is, moet het volgende gehele getal n + 1 zijn. De som van deze twee gehele getallen is n + (n + 1) = 2n + 1. Het verschil tussen hun vierkanten is (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zoals gewenst! Voel de vreugde van wiskunde.!