Antwoord:
Gebruik het feit dat het gebied van een rechthoek gelijk is aan de breedte
laat vervolgens zien dat de aderen van een algemeen parallellogram opnieuw kunnen worden gerangschikt in een rechthoek met een hoogte die gelijk is aan de afstand tussen tegenoverliggende zijden.
Uitleg:
Gebied van rechthoek
Op een algemeen parallellogram kan het gebied opnieuw worden gerangschikt door een driehoekig stuk van het ene uiteinde af te nemen en naar het andere uiteinde te schuiven.
Het oppervlak van de zijkant van een rechter cilinder kan worden gevonden door tweemaal het aantal pi te vermenigvuldigen met de straal maal de hoogte. Als een ronde cilinder een straal f en hoogte h heeft, wat is dan de uitdrukking die het oppervlak van zijn zijde vertegenwoordigt?
= 2pifh = 2pifh
Twee tegenovergestelde zijden van een parallellogram hebben lengtes van 3. Als één hoek van het parallellogram een hoek van pi / 12 heeft en het gebied van het parallellogram 14 is, hoe lang zijn dan de andere twee zijden?
Veronderstellend een beetje van fundamentele Trigonometry ... Laat x de (gemeenschappelijke) lengte van elke onbekende kant zijn. Als b = 3 de maat is van de basis van het parallellogram, laat h de verticale hoogte ervan zijn. Het gebied van het parallellogram is bh = 14 Omdat b bekend is, hebben we h = 14/3. Van basis Trig, sin (pi / 12) = h / x. We kunnen de exacte waarde van de sinus vinden door een formule met een halve of een andere hoek te gebruiken. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dus ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2)
Een parallellogram heeft zijden A, B, C en D. Zijkanten A en B hebben een lengte van 3 en zijden C en D hebben een lengte van 7. Als de hoek tussen zijden A en C (7 pi) / 12 is, wat is dan het gebied van het parallellogram?
20.28 vierkante eenheden Het oppervlak van een parallellogram wordt gegeven door het product van de aangrenzende zijden vermenigvuldigd met de sinus van de hoek tussen de zijden. Hier zijn de twee aangrenzende zijden 7 en 3 en de hoek daartussen is 7 pi / 12 Nu Sin 7 pi / 12 radialen = sin 105 graden = 0.965925826 Vervanging, A = 7 * 3 * 0.965925826 = 20.28444 sq eenheden.