Antwoord:
Uitleg:
Antwoord:
Uitleg:
De omtrek van een cirkel is
Dus als je de cilinder zou openen, zou de basis van de rechthoek de openliggende omtrek van de cirkel zijn.
Dus het oppervlak van één kant van de rechthoek is:
omtrek x hoogte
Het is belangrijk dat u de eenheden gebruikt die de vraag u voorschrijft. Anders kost het je punten.
De hoogte van een ronde cilinder met een bepaald volume varieert omgekeerd als het kwadraat van de straal van de basis. Hoeveel keer is de straal van een cilinder 3 m hoger dan de straal van een cilinder van 6 m hoog met hetzelfde volume?
De cilinderstraal van 3 m hoog is sqrt2 keer groter dan die van 6 m hoge cilinder. Laat h_1 = 3 m de hoogte zijn en r_1 de straal van de 1e cilinder. Laat h_2 = 6m de hoogte zijn en r_2 de straal van de 2e cilinder. Het volume van de cilinders is hetzelfde. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 of h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 of (r_1 / r_2) ^ 2 = 2 of r_1 / r_2 = sqrt2 of r_1 = sqrt2 * r_2 De straal van de cilinder van 3 m hoog is sqrt2 keer groter dan dat van 6 m hoge cilinder [Ans]
Max heeft 100 vierkante inch aluminium waarmee een gesloten cilinder kan worden gemaakt. Als de straal van de cilinder 2 inch moet zijn. Hoe groot zal de cilinder zijn?
(50 - 4pi) / (π) = h ~~ 11,92 "inch" Formule voor het oppervlak van een gesloten cilinder is: A_ "oppervlak" = 2pir ^ 2 + 2πrh dus de uwe is: A = 100 r = 2 Lossen: 100 = 2π2 ^ 2 + 2πh 100 - 2π4 = 2πh (100 - 8pi) / (2π) = h (2 (50 - 4pi)) / (2π) = h (50 - 4pi) / (π) = h (50 - 4pi) / (π) = h ~~ 11,92 "inches"
Het volume, V, in kubieke eenheden, van een cilinder wordt gegeven door V = πr ^ 2 h, waarbij r de straal is en h de hoogte, beide in dezelfde eenheden. Vind de exacte straal van een cilinder met een hoogte van 18 cm en een volume van 144p cm3. Wilt u uw antwoord in de eenvoudigste uitdrukken?
R = 2sqrt (2) We weten dat V = hpir ^ 2 en we weten dat V = 144pi, en h = 18 144pi = 18pir ^ 2 144 = 18r ^ 2 r ^ 2 = 144/18 = 8 r = sqrt (8 ) = sqrt (4 * 2) = sqrt (4) sqrt (2) = 2sqrt (2)