Antwoord:
Uitleg:
Laten we deze vergelijking in punt-hellingsvorm schrijven voordat deze in de standaardvorm wordt omgezet.
Laten we vervolgens toevoegen
Wat is de vergelijking in standaardvorm van de lijn die door het punt gaat (-4, 2) en heeft een helling 9/2?
Met een helling van 9/2 is de lijn van de vorm y = 9 / 2x + c om te bepalen wat c is zetten we de waarden (-4,2) in de vergelijking 2 = 9/2 xx-4 + c 2 = -18 + c 20 = c zodat de lijn y = 9 / 2x + 20 is
Wat is de vergelijking van een lijn die door het punt gaat (2, 5) en staat loodrecht op een lijn met een helling van -2?
Y = 1 / 2x + 4 Beschouw de standaardvorm y = mx + c als de vergelijking van een ul ("rechte lijn") De gradiënt van deze lijn is m We krijgen te horen dat m = -2 De helling van een rechte lijn loodlijn hierom is -1 / m. Dus de nieuwe lijn heeft de gradiënt -1 / m = (-1) xx1 / (- 2) = 1/2 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ Dus de vergelijking van de lijn is: y = 1 / 2x + c .................. .......... Vergelijking (1) Er wordt ons verteld dat deze lijn door het punt loopt (x, y) = (2,5) Dit vervangen door vergelijking (1) geeft 5 = 1/2 (2 ) + c "&quo
Schrijf een vergelijking in punt-hellingsvorm van de lijn die door het punt gaat (-3, 0) en heeft een helling van -1/3?
Zie een oplossingsprocedure hieronder: De punthellingsvorm van een lineaire vergelijking is: (y - kleur (blauw) (y_1)) = kleur (rood) (m) (x - kleur (blauw) (x_1)) Waar (kleur (blauw) (x_1), kleur (blauw) (y_1)) is een punt op de lijn en kleur (rood) (m) is de helling. Vervanging van de waarden van het punt in het probleem en de helling die in het probleem wordt geboden, geeft: (y - kleur (blauw) (0)) = kleur (rood) (- 1/3) (x - kleur (blauw) (- 3 )) (y - kleur (blauw) (0)) = kleur (rood) (- 1/3) (x + kleur (blauw) (3)) Of y = kleur (rood) (- 1/3) (x + kleur (blauw) (3))