Antwoord:
Lengte = 7 ft en Breedte = 2 ft
Uitleg:
Laat ik de lengty en b zijn de breedte van de rctangle.
Het gebied van een rechthoek is 100 vierkante inch. De omtrek van de rechthoek is 40 inch.? Een tweede rechthoek heeft hetzelfde gebied maar een andere omtrek. Is de tweede rechthoek een vierkant?
Nee. De tweede rechthoek is geen vierkant. De reden waarom de tweede rechthoek geen vierkant is, is omdat de eerste rechthoek het vierkant is. Bijvoorbeeld, als de eerste rechthoek (a.k.a. het vierkant) een omtrek van 100 vierkante inch en een omtrek van 40 inch heeft, dan moet één zijde een waarde van 10 hebben. Laten we daarom de bovenstaande verklaring rechtvaardigen. Als de eerste rechthoek inderdaad een vierkant * is, moeten alle zijden gelijk zijn. Bovendien zou dit eigenlijk logisch zijn om de reden dat als een van de zijden 10 is, alle andere zijden ook 10 moeten zijn. Dit zou dus dit vierkant een omtrek
De breedte en de lengte van een rechthoek zijn opeenvolgende even gehele getallen. Als de breedte met 3 inch wordt verkleind. dan is het gebied van de resulterende rechthoek 24 vierkante inch. Wat is het gebied van de oorspronkelijke rechthoek?
48 "vierkante inch" "laat de breedte" = n "dan lengte" = n + 2 n "en" n + 2color (blauw) "zijn opeenvolgende even gehele getallen" "de breedte wordt verkleind met" 3 "inch" rArr "breedte "= n-3" gebied "=" lengte "xx" breedte "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blauw) "in standaardvorm" "de factoren van - 30 die som zijn tot - 1 zijn + 5 en - 6" rArr (n-6) (n + 5) = 0 "stellen elke factor gelijk aan nul en lossen op voor n" n-6 = 0rArrn = 6 n + 5 =
Wat is de mate van verandering van de breedte (in ft / sec) wanneer de hoogte 10 voet is, als de hoogte op dat moment afneemt met een snelheid van 1 ft / sec. Een rechthoek heeft zowel een veranderende hoogte als een veranderende breedte , maar de hoogte en breedte veranderen zodat het gebied van de rechthoek altijd 60 vierkante voet is?
De snelheid van verandering van de breedte in de tijd (dW) / (dt) = 0.6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "ft / s" Dus (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / u (dW) / ( dh) = - (60) / (h ^ 2) Dus (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Dus wanneer h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0.6 "ft / s"