Antwoord:
Uitleg:
Omdat de lijn loodrecht staat op een andere lijn met helling
Vandaar de helling van de lijn
Gebruik makend van
wij weten
daarom
Het substitueren
daarom
Gregory tekende een rechthoekige ABCD op een coördinaatvlak. Punt A staat op (0,0). Punt B staat op (9,0). Punt C staat op (9, -9). Punt D staat op (0, -9). Zoek de lengte van de zijkant CD?
Side CD = 9 eenheden Als we de y-coördinaten negeren (de tweede waarde in elk punt), is het gemakkelijk om dat te zien, aangezien de side-CD begint bij x = 9 en eindigt op x = 0, de absolute waarde is 9: | 0 - 9 | = 9 Vergeet niet dat de oplossingen voor absolute waarden altijd positief zijn. Als u niet begrijpt waarom dit is, kunt u ook de afstandformule gebruiken: P_ "1" (9, -9) en P_ "2" (0, -9 ) In de volgende vergelijking is P_ "1" C en P_ "2" is D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt ((0 - 9) ^ 2 + (-9 - (-9)) sqrt
Wat is de vergelijking in standaardvorm van een lijn die loodrecht doorloopt (5, -1) en wat is het X-snijpunt van de lijn?
Zie hieronder voor stappen om dit soort vragen op te lossen: Normaal gesproken met een vraag als deze hebben we een lijn om mee te werken die ook door het gegeven punt gaat. Aangezien we dat niet krijgen, maak ik er een op en ga ik verder met de vraag. Oorspronkelijke regel (zo genoemd ...) Om een lijn te vinden die een bepaald punt passeert, kunnen we de punthellingsvorm van een lijn gebruiken, waarvan de algemene vorm is: (y-y_1) = m (x-x_1 ) Ik ga m instellen op 2. Onze lijn heeft dan een vergelijking van: (y - (- 1)) = 2 (x-5) => y + 1 = 2 (x-5) en ik kan deze lijn in de vorm van de punthelling uitdrukken: y = 2x-
Wat is de vergelijking van een lijn die loodrecht staat op een lijn met een helling van 4 en een y-snijpunt van 5 heeft?
Y = -1 / 4 + 5 Als een lijn een helling m heeft, is de loodrechte helling de negatieve reciproque -1 / m. De loodlijn heeft de vergelijking y = -1 / 4 + 5.