Antwoord:
Nummers zijn
Uitleg:
Laat het nummer zijn
Als som van de eerste en de derde vermenigvuldigd met
is
of
of
of
Daarom zijn nummers
Drie opeenvolgende positieve even gehele getallen zijn zodanig dat het product de tweede en derde gehele getallen twintig meer dan tien keer het eerste gehele getal is. Wat zijn deze nummers?
Laat de getallen x, x + 2 en x + 4 zijn. Dan (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 en -2 Aangezien het probleem aangeeft dat het gehele getal positief moet zijn, hebben we dat de getallen 6, 8 zijn en 10. Hopelijk helpt dit!
Het verdrievoudigen van de grootste van twee opeenvolgende even gehele getallen geeft hetzelfde resultaat als het aftrekken van 10 van het mindere even gehele getal. Wat zijn de gehele getallen?
Ik vond -8 en -6 Noem je gehele getallen: 2n en 2n + 2 heb je: 3 (2n + 2) = 2n-10 herschikken: 6n + 6 = 2n-10 6n-2n = -6-10 4n = -16 n = -16 / 4 = -4 Dus de gehele getallen moeten zijn: 2n = 2 (-4) = - 8 2n + 2 = 2 (-4) + 2 = -6
Wat is het middelste gehele getal van 3 opeenvolgende positieve even gehele getallen als het product van de kleinere twee gehele getallen 2 minder is dan 5 keer het grootste gehele getal?
8 '3 opeenvolgende positieve even gehele getallen kunnen worden geschreven als x; x + 2; x + 4 Het product van de twee kleinere gehele getallen is x * (x + 2) '5 keer het grootste gehele getal' is 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 We kan het negatieve resultaat uitsluiten omdat de gehele getallen positief zijn, dus x = 6 Het middelste gehele getal is daarom 8