Antwoord:
Helling van een lijn loodrecht op de gegeven lijn zal zijn
Uitleg:
Laten we eerst de vergelijking van de lijn schrijven
Zoals
Als het product van hellingen van twee lijnen loodrecht op elkaar is
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van een lijn die door het punt loopt (0, 2) en loodrecht staat op een lijn met een helling van 3?
Y = -1/3 x + 2> voor 2 loodrechte lijnen met verlopen m_1 "en" m_2 en dan m_1. m_2 = -1 hier 3 xx m = - 1 rArr m = -1/3 vergelijking van de lijn, y - b = m (x - a) is vereist. met m = -1/3 "en (a, b) = (0, 2)" vandaar y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2
Wat is de vergelijking van een lijn die loodrecht staat op een lijn met een helling van 4 en een y-snijpunt van 5 heeft?
Y = -1 / 4 + 5 Als een lijn een helling m heeft, is de loodrechte helling de negatieve reciproque -1 / m. De loodlijn heeft de vergelijking y = -1 / 4 + 5.